Existence and nonexistence of a global solution to the Kuramoto-Sivashinsky equation

被引:8
|
作者
Galaktionov, V. A. [1 ]
Mitidieri, E. [2 ]
Pohozaev, S. I. [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Trieste, Dipartimento Matemat & Informat, Trieste, Italy
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S106456240802021X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A study was conducted to discuss the existence and nonexistence of a global solution to the Kuramoto-Sivashinsky equation. The study considered initial boundary-value problems (IBV) for the Kuramoto-Sivashinsky equation in one dimension. It proved the existence of a global solution both with Dirichlet and with 'Navier' boundary conditions, and also proved a blow-up of solutions of IBV problem with boundary conditions of other kind. The Kuramoto-Sivashinsky equation arises as a model in hydrodynamics, in the combustion theory, phase turbulence, and plasmas, as one model for spatiotemporal chaos and in many other physical phenomena. The study also used a classical approach on the Galerkin method for the proof of existence, while for the proof of blow-up, the 'nonlinear capacity' method, based on special characteristic test functions (eigenfunctions), was used.
引用
下载
收藏
页码:238 / 242
页数:5
相关论文
共 50 条
  • [41] Feedback control of the Kuramoto-Sivashinsky equation
    Armaou, A
    Christofides, PD
    PHYSICA D, 2000, 137 (1-2): : 49 - 61
  • [42] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163
  • [43] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [44] A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROST, M
    KRUG, J
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) : 1 - 13
  • [45] On a nonlocal analog of the Kuramoto-Sivashinsky equation
    Granero-Belinchon, Rafael
    Hunter, John K.
    NONLINEARITY, 2015, 28 (04) : 1103 - 1133
  • [46] ANISOTROPY EFFECT ON KURAMOTO-SIVASHINSKY EQUATION
    SHIRAISHI, K
    SAITO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 9 - 13
  • [47] Hopping behavior in the Kuramoto-Sivashinsky equation
    Blomgren, P
    Gasner, S
    Palacios, A
    CHAOS, 2005, 15 (01)
  • [48] Robust control of the Kuramoto-Sivashinsky equation
    Hu, CB
    Temam, R
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (03): : 315 - 338
  • [49] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROBINSON, JC
    PHYSICS LETTERS A, 1994, 184 (02) : 190 - 193
  • [50] On steady solutions of the Kuramoto-Sivashinsky equation
    Ishimura, N
    NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 45 - 51