Zero-Shot Learning via Semantic Similarity Embedding

被引:370
|
作者
Zhang, Ziming [1 ]
Saligrama, Venkatesh [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
关键词
D O I
10.1109/ICCV.2015.474
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider a version of the zero-shot learning problem where seen class source and target domain data are provided. The goal during test-time is to accurately predict the class label of an unseen target domain instance based on revealed source domain side information (e.g. attributes) for unseen classes. Our method is based on viewing each source or target data as a mixture of seen class proportions and we postulate that the mixture patterns have to be similar if the two instances belong to the same unseen class. This perspective leads us to learning source/target embedding functions that map an arbitrary source/target domain data into a same semantic space where similarity can be readily measured. We develop a max-margin framework to learn these similarity functions and jointly optimize parameters by means of cross validation. Our test results are compelling, leading to significant improvement in terms of accuracy on most benchmark datasets for zero-shot recognition.
引用
下载
收藏
页码:4166 / 4174
页数:9
相关论文
共 50 条
  • [21] Learning visual-and-semantic knowledge embedding for zero-shot image classification
    Dehui Kong
    Xiliang Li
    Shaofan Wang
    Jinghua Li
    Baocai Yin
    Applied Intelligence, 2023, 53 : 2250 - 2264
  • [22] Learning visual-and-semantic knowledge embedding for zero-shot image classification
    Kong, Dehui
    Li, Xiliang
    Wang, Shaofan
    Li, Jinghua
    Yin, Baocai
    APPLIED INTELLIGENCE, 2023, 53 (02) : 2250 - 2264
  • [23] Semantic-guided Reinforced Region Embedding for Generalized Zero-Shot Learning
    Ge, Jiannan
    Xie, Hongtao
    Min, Shaobo
    Zhang, Yongdong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1406 - 1414
  • [24] Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2371 - 2381
  • [25] Transductive Unbiased Embedding for Zero-Shot Learning
    Song, Jie
    Shen, Chengchao
    Yang, Yezhou
    Liu, Yang
    Song, Mingli
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1024 - 1033
  • [26] Zero-shot Learning via the fusion of generation and embedding for image recognition
    Zhao, Peng
    Zhang, Siying
    Liu, Jinhui
    Liu, Huiting
    INFORMATION SCIENCES, 2021, 578 (578) : 831 - 847
  • [27] Disentangled Ontology Embedding for Zero-shot Learning
    Geng, Yuxia
    Chen, Jiaoyan
    Zhang, Wen
    Xu, Yajing
    Chen, Zhuo
    Pan, Jeff Z.
    Huang, Yufeng
    Xiong, Feiyu
    Chen, Huajun
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 443 - 453
  • [28] Learning a Deep Embedding Model for Zero-Shot Learning
    Zhang, Li
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3010 - 3019
  • [29] Adversarial Zero-Shot Learning with Semantic Augmentation
    Tong, Bin
    Klinkigt, Martin
    Chen, Junwen
    Cui, Xiankun
    Kong, Quan
    Murakami, Tomokazu
    Kobayashi, Yoshiyuki
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2476 - 2483
  • [30] Zero-shot learning via visual-semantic aligned autoencoder
    Wei, Tianshu
    Huang, Jinjie
    Jin, Cong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14081 - 14095