Zero-Shot Learning via Semantic Similarity Embedding

被引:370
|
作者
Zhang, Ziming [1 ]
Saligrama, Venkatesh [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
关键词
D O I
10.1109/ICCV.2015.474
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider a version of the zero-shot learning problem where seen class source and target domain data are provided. The goal during test-time is to accurately predict the class label of an unseen target domain instance based on revealed source domain side information (e.g. attributes) for unseen classes. Our method is based on viewing each source or target data as a mixture of seen class proportions and we postulate that the mixture patterns have to be similar if the two instances belong to the same unseen class. This perspective leads us to learning source/target embedding functions that map an arbitrary source/target domain data into a same semantic space where similarity can be readily measured. We develop a max-margin framework to learn these similarity functions and jointly optimize parameters by means of cross validation. Our test results are compelling, leading to significant improvement in terms of accuracy on most benchmark datasets for zero-shot recognition.
引用
下载
收藏
页码:4166 / 4174
页数:9
相关论文
共 50 条
  • [1] Zero-Shot Learning via Joint Latent Similarity Embedding
    Zhang, Ziming
    Saligrama, Venkatesh
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 6034 - 6042
  • [2] ENCYCLOPEDIA ENHANCED SEMANTIC EMBEDDING FOR ZERO-SHOT LEARNING
    Jia, Zhen
    Zhang, Junge
    Huang, Kaiqi
    Tan, Tieniu
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1287 - 1291
  • [3] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Zongyan Han
    Zhenyong Fu
    Shuo Chen
    Jian Yang
    International Journal of Computer Vision, 2022, 130 : 2606 - 2622
  • [4] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622
  • [5] A Semantic Similarity Supervised Autoencoder for Zero-Shot Learning
    Shen, Fengli
    Lu, Zhe-Ming
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (06): : 1419 - 1422
  • [6] Learning discriminative visual semantic embedding for zero-shot recognition
    Xie, Yurui
    Song, Tiecheng
    Yuan, Jianying
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 115
  • [7] Semantic Consistent Embedding for Domain Adaptive Zero-Shot Learning
    Zhang, Jianyang
    Yang, Guowu
    Hu, Ping
    Lin, Guosheng
    Lv, Fengmao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4024 - 4035
  • [8] Transductive Visual-Semantic Embedding for Zero-shot Learning
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    Shao, Jie
    Huang, Zi
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 41 - 49
  • [9] Domain-Oriented Semantic Embedding for Zero-Shot Learning
    Min, Shaobo
    Yao, Hantao
    Xie, Hongtao
    Zha, Zheng-Jun
    Zhang, Yongdong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3919 - 3930
  • [10] Leveraging Balanced Semantic Embedding for Generative Zero-Shot Learning
    Xie, Guo-Sen
    Zhang, Xu-Yao
    Xiang, Tian-Zhu
    Zhao, Fang
    Zhang, Zheng
    Shao, Ling
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 9575 - 9582