A CMOS analog neuro-chip with stochastic learning and multilevel weight storage

被引:0
|
作者
Conti, M
Guaitini, G
Turchetti, C
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A CMOS analog neural network is described in this paper. The chip, fabricated in a 1.0 mu m CMOS technology, has a 2-dimension input vector, 16 neurons, 112 weights, each one with a multilevel storage circuit, 28 internal uncorrelated noise sources, a random weight change learning algorithm implemented on-chip, weight access capability.
引用
收藏
页码:1844 / 1847
页数:4
相关论文
共 33 条
  • [21] Effects of multiplier output offsets on on-chip learning for analog neuro-chips
    Choi, YK
    Ahn, KH
    Lee, SY
    NEURAL PROCESSING LETTERS, 1996, 4 (01) : 1 - 8
  • [22] Non-refreshing analog neural storage tailored for on-chip learning
    Alhalabi, BA
    Malluhi, Q
    Ayoubi, R
    PROCEEDINGS OF THE 8TH GREAT LAKES SYMPOSIUM ON VLSI, 1998, : 168 - 171
  • [23] A Dual-Mode Weight Storage Analog Neural Network Platform for On-Chip Applications
    Maliuk, Dzmitry
    Makris, Yiorgos
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [24] Analog weight updates with compliance current modulation of binary ReRAMs for on-chip learning
    Payvand, Melika
    Demirag, Yigit
    Dalgaty, Thomas
    Vianello, Elisa
    Indiveri, Giacomo
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [25] A single-chip text-to-speech synthesis device utilizing analog nonvolatile multilevel flash storage
    Jackson, G
    Awsare, SV
    Chang, MB
    Chen, WK
    Doan, R
    Holzmann, P
    Kahn, D
    Lin, CSR
    Macchi, M
    Raina, A
    Wu, JBH
    Yang, B
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2002, 37 (11) : 1582 - 1589
  • [26] A REAL-TIME EXPERIMENT USING A 50-NEURON CMOS ANALOG SILICON CHIP WITH ON-CHIP DIGITAL LEARNING
    SALAM, FMA
    WANG, YW
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (04): : 461 - 464
  • [27] An analog on-chip learning architecture based on the weight perturbation algorithm and on current mode translinear circuits
    Valle, M
    Diotalevi, F
    Bo, GM
    Biglieri, E
    Caviglia, DD
    NEURAL NETS - WIRN VIETRI-99, 1999, : 308 - 313
  • [28] A Neuromorphic Chip Optimized for Deep Learning and CMOS Technology With Time-Domain Analog and Digital Mixed-Signal Processing
    Miyashita, Daisuke
    Kousai, Shouhei
    Suzuki, Tomoya
    Deguchi, Jun
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (10) : 2679 - 2689
  • [29] A 1 TOPS/W Analog Deep Machine-Learning Engine With Floating-Gate Storage in 0.13 μm CMOS
    Lu, Junjie
    Young, Steven
    Arel, Itamar
    Holleman, Jeremy
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (01) : 270 - 281
  • [30] A 1TOPS/W Analog Deep Machine-Learning Engine with Floating-Gate Storage in 0.13μm CMOS
    Lu, Junjie
    Young, Steven
    Arel, Itamar
    Holleman, Jeremy
    2014 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL PAPERS (ISSCC), 2014, 57 : 504 - +