High-impedance fault detection in electrical power distribution systems using moving sum approach

被引:41
|
作者
Sarwagya, Kumari [1 ]
De, Sourav [1 ]
Nayak, Paresh Kumar [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Elect Engn, Dhanbad 826004, Bihar, India
关键词
ENHANCED PROTECTION SCHEME; ARCING FAULT; DISTRIBUTION FEEDERS; MV NETWORKS; LOCATION; TRANSFORM; BEHAVIOR;
D O I
10.1049/iet-smt.2017.0231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-impedance faults (HIFs) in electrical power distribution systems produce a very random, non-linear and low-magnitude fault current. The conventional overcurrent (OC) relaying-based distribution system protection schemes find difficulty in detecting such low-current HIFs. In this study, a simple two criteria-based protection scheme is proposed for detection and isolation of HIFs in multi-feeder radial distribution systems. It utilises one-cycle sum of superimposed components of residual voltage for HIF detection and the maximum value of one-cycle sum of superimposed components of negative-sequence current for faulted feeder identification. The performance of the proposed scheme is evaluated for a wide variety of possible test cases by generating data through power systems computer-aided design/electro-magnetic transient design and control software. Results clearly show that the proposed scheme can assist conventional OC relay for detection and isolation of HIFs in distribution systems with any grounding connections in a more reliable and faster way.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] High-impedance fault detection on downed conductor in overhead distribution networks
    Wontroba, Aldair
    Morais, Adriano Peres
    Cardoso, Ghendy Junior
    Farias, Patrick Escalante
    Gallas, Marion
    Rossini, Jean Pereira
    Vieira, Joao Paulo Abreu
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
  • [22] High-Impedance Fault Identification on Distribution Networks
    Santos, W. C.
    Lopes, F. V.
    Brito, N. S. D.
    Souza, B. A.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2017, 32 (01) : 23 - 32
  • [23] High-impedance fault detection utilizing a Morlet wavelet transform approach
    Huang, SJ
    Hsieh, CT
    IEEE TRANSACTIONS ON POWER DELIVERY, 1999, 14 (04) : 1401 - 1410
  • [24] High Impedance Fault Detection Protection Scheme for Power Distribution Systems
    Moloi, Katleho
    Davidson, Innocent
    MATHEMATICS, 2022, 10 (22)
  • [25] High-Impedance Fault Detection in the Distribution Network Using the Time-Frequency-Based Algorithm
    Ghaderi, Amin
    Mohammadpour, Hossein Ali
    Ginn, Herbert L., II
    Shin, Yong-June
    IEEE TRANSACTIONS ON POWER DELIVERY, 2015, 30 (03) : 1260 - 1268
  • [26] Detection of High-Impedance Fault in Distribution Networks Using Frequency-Band Energy Curve
    Bai, Hao
    Gao, Jian-Hong
    Li, Wei
    Wang, Kang
    Guo, Mou-Fa
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 427 - 436
  • [27] Application of signal processing techniques and intelligent classifiers for high-impedance fault detection in ensuring the reliable operation of power distribution systems
    Varghese, P. Rini
    Subathra, M. S. P.
    George, S. Thomas
    Kumar, Nallapaneni Manoj
    Suviseshamuthu, Easter Selvan
    Deb, Sanchari
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [28] High impedance fault detection on distribution systems
    Wester, CG
    1998 RURAL ELECTRIC POWER CONFERENCE, 1998, : C51 - C55
  • [29] Advanced signal analysis for high-impedance fault detection in distribution systems: a dynamic Hilbert transform method
    Gogula, Vyshnavi
    Edward, Belwin
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [30] High-impedance fault detection and localization in distribution feeders with microprocessor based devices
    Uriarte, FM
    Centeno, V
    37TH NORTH AMERICAN POWER SYMPOSIUM, PROCEEDINGS, 2005, : 219 - 224