A sequent calculus for circumscription

被引:0
|
作者
Bonatti, PA [1 ]
Olivetti, N [1 ]
机构
[1] Univ Turin, Dipartimento Informat, I-10149 Turin, Italy
来源
COMPUTER SCIENCE LOGIC | 1998年 / 1414卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a sequent calculus CIRC for propositional Circumscription. This work is part of a larger project, aiming at a uniform proof-theoretic reconstruction of the major families of non-monotonic logics. Among the novelties of the calculus, we mention that CIRC is analytic and comprises an axiomatic rejection method, which allows for a fully detailed formalization of the nonmonotonic aspects of inference.
引用
收藏
页码:98 / 114
页数:17
相关论文
共 50 条
  • [21] Sequent calculus for classical logic probabilized
    Boricic, Marija
    ARCHIVE FOR MATHEMATICAL LOGIC, 2019, 58 (1-2) : 119 - 136
  • [22] Sequent calculus in natural deduction style
    Negri, S
    von Plato, J
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (04) : 1803 - 1816
  • [23] A Nonmonotonic Sequent Calculus for Inferentialist Expressivists
    Hlobil, Ulf
    LOGICA YEARBOOK 2015, 2016, : 87 - 105
  • [24] Labeled sequent calculus for justification logics
    Ghari, Meghdad
    ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (01) : 72 - 111
  • [25] A sequent calculus for skeptical default logic
    Bonatti, PA
    Olivetti, N
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, 1997, 1227 : 107 - 121
  • [26] A SIMPLE SEQUENT CALCULUS FOR PARTIAL FUNCTIONS
    ELVANGGORANSSON, M
    OWE, O
    THEORETICAL COMPUTER SCIENCE, 1993, 114 (02) : 317 - 330
  • [27] A Unified Sequent Calculus for Focused Proofs
    Liang, Chuck
    Miller, Dale
    24TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2009, : 355 - +
  • [28] Algebra and Sequent Calculus for Epistemic Actions
    Baltag, Alexandru
    Coecke, Bob
    Sadrzadeh, Mehrnoosh
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2005, 126 : 27 - 52
  • [29] Labelled Sequent Calculus for Inquisitive Logic
    Chen, Jinsheng
    Ma, Minghui
    LOGIC, RATIONALITY, AND INTERACTION, LORI 2017, 2017, 10455 : 526 - 540
  • [30] Sequent Calculus Representations for Quantum Circuits
    Beebe, Cameron
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (214): : 3 - 15