INTERSECTIONS OF RANDOM SETS

被引:1
|
作者
Richey, Jacob [1 ]
Sarkar, Amites [2 ]
机构
[1] Univ British Columbia, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Western Washington Univ, 516 High St, Bellingham, WA 98225 USA
关键词
Poisson process; random tessellation; Crofton cell; RANDOM LINES;
D O I
10.1017/jpr.2021.34
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a variant of a classical coverage process, the Boolean model in R-d. Previous efforts have focused on convergence of the unoccupied region containing the origin to a well-studied limit C. We study the intersection of sets centered at points of a Poisson point process confined to the unit ball. Using a coupling between the intersection model and the original Boolean model, we show that the scaled intersection converges weakly to the same limit C. Along the way, we present some tools for studying statistics of a class of intersection models.
引用
收藏
页码:131 / 151
页数:21
相关论文
共 50 条
  • [31] INTERSECTIONS OF RANDOM LINE SEGMENTS
    Devroye, Luc
    Zhu, Binhai
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1994, 4 (03) : 261 - 274
  • [32] Sampling by intersections with random geodesics
    Grupel, Uri
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 423 - 448
  • [33] Intersections with random geometric objects
    Bose, P
    Devroye, L
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (03): : 139 - 154
  • [34] INTERSECTIONS OF RANDOM CHORDS OF CIRCLE
    DAVID, FN
    FIX, E
    BIOMETRIKA, 1964, 51 (3-4) : 373 - &
  • [35] Sampling by intersections with random geodesics
    Uri Grupel
    Israel Journal of Mathematics, 2020, 236 : 423 - 448
  • [36] Conflict equilibria on sets with nonempty intersections
    Smol'yakov, ER
    DOKLADY MATHEMATICS, 2003, 68 (01) : 42 - 45
  • [37] INTERSECTIONS OF CERTAIN DELETED DIGITS SETS
    Pedersen, Steen
    Phillips, Jason D.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2012, 20 (01) : 105 - 115
  • [38] Affine embeddings and intersections of Cantor sets
    Feng, De-Jun
    Huang, Wen
    Rao, Hui
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (06): : 1062 - 1079
  • [39] Intersections and circuits in sets of line segments
    Boris Brimkov
    Jesse Geneson
    Alathea Jensen
    Jordan Broussard
    Pouria Salehi Nowbandegani
    Journal of Combinatorial Optimization, 2022, 44 : 2302 - 2323
  • [40] Intersections and unions of fuzzy sets of operands
    Mashchenko, S.
    FUZZY SETS AND SYSTEMS, 2018, 352 : 12 - 25