Prussian Blue@C Composite as an Ultrahigh-Rate and Long-Life Sodium-Ion Battery Cathode

被引:363
|
作者
Jiang, Yinzhu [1 ,2 ]
Yu, Shenglan [1 ,2 ]
Wang, Baoqi [1 ,2 ]
Li, Yong [1 ,2 ]
Sun, Wenping [3 ]
Lu, Yunhao [1 ,2 ]
Yan, Mi [1 ,2 ]
Song, Bin [4 ]
Dou, Shixue [3 ]
机构
[1] Zhejiang Univ, Key Lab Novel Mat Informat Technol Zhejiang Prov, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[4] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-STORAGE; SUPERIOR CATHODE; ELECTRODE MATERIALS; HEXACYANOFERRATE; NA3V2(PO4)(3); CARBON; ANODE; NANOPARTICLES; PERFORMANCE; CHALLENGES;
D O I
10.1002/adfm.201600747
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable sodium ion batteries (SIBs) are surfacing as promising candidates for applications in large-scale energy-storage systems. Prussian blue (PB) and its analogues (PBAs) have been considered as potential cathodes because of their rigid open framework and low-cost synthesis. Nevertheless, PBAs suffer from inferior rate capability and poor cycling stability resulting from the low electronic conductivity and deficiencies in the PBAs framework. Herein, to understand the vacancy-impacted sodium storage and Na-insertion reaction kinetics, we report on an in-situ synthesized PB@C composite as a high-performance SIB cathode. Perfectly shaped, nanosized PB cubes were grown directly on carbon chains, assuring fast charge transfer and Na-ion diffusion. The existence of [Fe(CN)(6)] vacancies in the PB crystal is found to greatly degrade the electrochemical activity of the Fe-LS(C) redox couple via first-principles computation. Superior reaction kinetics are demonstrated for the redox reactions of the Fe-HS(N) couple, which rely on the partial insertion of Na ions to enhance the electron conduction. The synergistic effects of the structure and morphology results in the PB@C composite achieving an unprecedented rate capability and outstanding cycling stability (77.5 mAh g(-1) at 90 C, 90 mAh g(-1) after 2000 cycles at 20 C with 90% capacity retention).
引用
收藏
页码:5315 / 5321
页数:7
相关论文
共 50 条
  • [31] Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries
    Yonglin Tang
    Qinghua Zhang
    Wenhua Zuo
    Shiyuan Zhou
    Guifan Zeng
    Baodan Zhang
    Haitang Zhang
    Zhongyuan Huang
    Lirong Zheng
    Juping Xu
    Wen Yin
    Yongfu Qiu
    Yinguo Xiao
    Qiaobao Zhang
    Tiqing Zhao
    Hong-Gang Liao
    Inhui Hwang
    Cheng-Jun Sun
    Khalil Amine
    Qingsong Wang
    Yang Sun
    Gui-Liang Xu
    Lin Gu
    Yu Qiao
    Shi-Gang Sun
    Nature Sustainability, 2024, 7 : 348 - 359
  • [32] NiSe2 Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery
    Zhu, Shaohua
    Li, Qidong
    Wei, Qiulong
    Sun, Ruimin
    Liu, Xiaoqing
    An, Qinyou
    Mai, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (01) : 311 - 316
  • [33] Manipulating Local Chemistry and Coherent Structures for High-Rate and Long-Life Sodium-Ion Battery Cathodes
    Wang, Haoji
    Chen, Hongyi
    Mei, Yu
    Gao, Jinqiang
    Ni, Lianshan
    Hong, Ningyun
    Zhang, Baichao
    Zhu, Fangjun
    Huang, Jiangnan
    Wang, Kai
    Deng, Wentao
    Silvester, Debbie S.
    Banks, Craig E.
    Yasar, Sedat
    Song, Bai
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    ACS NANO, 2024, 18 (20) : 13150 - 13163
  • [34] Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries
    Tang, Yonglin
    Zhang, Qinghua
    Zuo, Wenhua
    Zhou, Shiyuan
    Zeng, Guifan
    Zhang, Baodan
    Zhang, Haitang
    Huang, Zhongyuan
    Zheng, Lirong
    Xu, Juping
    Yin, Wen
    Qiu, Yongfu
    Xiao, Yinguo
    Zhang, Qiaobao
    Zhao, Tiqing
    Liao, Hong-Gang
    Hwang, Inhui
    Sun, Cheng-Jun
    Amine, Khalil
    Wang, Qingsong
    Sun, Yang
    Xu, Gui-Liang
    Gu, Lin
    Qiao, Yu
    Sun, Shi-Gang
    NATURE SUSTAINABILITY, 2024, 7 (03) : 348 - 359
  • [35] Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries
    Rehman, Ratul
    Peng, Jian
    Yi, Haocong
    Shen, Yi
    Yin, Jinwen
    Li, Chang
    Fang, Chun
    Li, Qing
    Han, Jiantao
    RSC ADVANCES, 2020, 10 (45) : 27033 - 27041
  • [36] Nanoarchitectonics for a long-life and robust Na-ion battery at low temperature with Prussian blue cathode and low-concentration electrolyte
    Zhang, Xiaomei
    Xu, Zheng
    Xie, Jian
    Lu, Yunhao
    Liu, Shuangyu
    Xu, Xiongwen
    Tu, Jian
    Xu, Bo
    Zhao, Xinbing
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [37] First-principles study on structural and electronic properties of Prussian blue cathode material for sodium-ion battery
    Nasir, N. A. M.
    Badrudin, F. W.
    Idrus, A.
    Sazman, F. N.
    Taib, M. F. M.
    Yahya, M. Z. A.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2019, 693 (01) : 115 - 122
  • [38] Unique two-dimensional Prussian blue nanoplates for high-performance sodium-ion battery cathode
    Kang, Ji Eun
    Vo, Thuan Ngoc
    Ahn, Suk-kyun
    Lee, Sang-Wha
    Kim, Il Tae
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [39] Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries
    Li, Qingping
    Li, Tao
    Shao, Chenchen
    Liu, Wei
    PROGRESS IN CHEMISTRY, 2023, 35 (07) : 1053 - 1064
  • [40] Nanocoating Achieving Hydrophobic Prussian Blue as Stable Cathode in Sodium-Ion Batteries
    Peng, Jiayu
    Liao, Yaqi
    Zhang, Yi
    Huang, Kai
    Han, Yan
    Chen, Weilun
    Xue, Lihong
    Zhang, Wuxing
    ACS APPLIED NANO MATERIALS, 2023, 7 (24) : 27822 - 27829