Voluntary lane-change policy synthesis with control improvisation

被引:0
|
作者
Ge, Jin I. [1 ]
Murray, Richard M. [1 ]
机构
[1] CALTECH, Dept Computat & Math Sci, Pasadena, CA 91125 USA
关键词
MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we use control improvisation to synthesize voluntary lane-change policy that meets human preferences under given traffic environments. We first train Markov models to describe traffic patterns and the motion of vehicles responding to such patterns using traffic data. The trained parameters are calibrated using control improvisation to ensure the traffic scenario assumptions are satisfied. Based on the traffic pattern, vehicle response models, and Bayesian switching rules, the lane-change environment for an automated vehicle is modeled as a Markov decision process. Based on human lane-change behaviors, we train a voluntary lane-change policy using explicit-duration Markov decision process. Parameters in the lane-change policy are calibrated through control improvisation to allow an automated car to pursue faster speed while maintaining desired frequency of lane-change maneuvers in various traffic environments.
引用
收藏
页码:3640 / 3647
页数:8
相关论文
共 50 条
  • [21] A comprehensive algorithm for automatic emergency lane-change
    Samiee, S.
    Eichberger, Arno
    Azadi, Shahram
    Kazemi, Reza
    Shao, Liang
    Rogic, Branko
    DYNAMICS OF VEHICLES ON ROADS AND TRACKS, VOL 1, 2018, : 353 - 358
  • [22] Emergency lane-change maneuvers of autonomous vehicles
    Shiller, Z
    Sundar, S
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1998, 120 (01): : 37 - 44
  • [23] Lane-Change Intention Estimation for Car-Following Control in Autonomous Driving
    Zhang, Yihuan
    Lin, Qin
    Wang, Jun
    Verwer, Sicco
    Dolan, John M.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2018, 3 (03): : 276 - 286
  • [24] Simultaneous Realization of Planning and Control for Lane-change Behavior Using Nonlinear Model Predictive Control
    Sugie, Nobuto
    Okuda, Hiroyuki
    Suzuki, Tatsuya
    Haraguchi, Kentaro
    Kang, Zibo
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 2406 - 2411
  • [25] LC-RSS: A Lane-Change Responsibility-Sensitive Safety Framework Based on Data-Driven Lane-Change Prediction
    Zhao, Nanbin
    Wang, Bohui
    Zhang, Kun
    Lu, Yun
    Luo, Ruikang
    Su, Rong
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2531 - 2541
  • [26] Lane-change detection using a computational driver model
    Salvucci, Dario D.
    Mandalia, Hiren M.
    Kuge, Nobuyuki
    Yamamura, Tomohiro
    HUMAN FACTORS, 2007, 49 (03) : 532 - 542
  • [27] Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios
    Chen, Baiming
    Chen, Xiang
    Wu, Qiong
    Li, Liang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 10333 - 10342
  • [28] Calibration and Validation of Probabilistic Discretionary Lane-Change Models
    Knoop, Victor L.
    Buisson, Christine
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (02) : 834 - 843
  • [29] Lane-change detection based on individual driving style
    Woo, Hanwool
    Ji, Yonghoon
    Tamura, Yusuke
    Kuroda, Yasuhide
    Sugano, Takashi
    Yamamoto, Yasunori
    Yamashita, Atsushi
    Asama, Hajime
    ADVANCED ROBOTICS, 2019, 33 (20) : 1087 - 1098
  • [30] Cooperative CAV mandatory lane-change control enabled by V2I
    Yi, Ran
    Yao, Yifan
    Pu, Fan
    Zhou, Yang
    Wang, Xin
    COMMUNICATIONS IN TRANSPORTATION RESEARCH, 2024, 4