Region-specific Diffeomorphic Metric Mapping

被引:0
|
作者
Shen, Zhengyang [1 ]
Vialard, Francois-Xavier [2 ]
Niethammer, Marc [1 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27515 USA
[2] UPEM, LIGM, Champs Sur Marne, France
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019) | 2019年 / 32卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
IMAGE REGISTRATION; FLOWS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a region-specific diffeomorphic metric mapping (RDMM) registration approach. RDMM is non-parametric, estimating spatio-temporal velocity fields which parameterize the sought-for spatial transformation. Regularization of these velocity fields is necessary. In contrast to existing non-parametric registration approaches using a fixed spatially-invariant regularization, for example, the large displacement diffeomorphic metric mapping (LDDMM) model, our approach allows for spatially-varying regularization which is advected via the estimated spatio-temporal velocity field. Hence, not only can our model capture large displacements, it does so with a spatio-temporal regularizer that keeps track of how regions deform, which is a more natural mathematical formulation. We explore a family of RDMM registration approaches: 1) a registration model where regions with separate regularizations are pre-defined (e.g., in an atlas space or for distinct foreground and background regions), 2) a registration model where a general spatially-varying regularizer is estimated, and 3) a registration model where the spatially-varying regularizer is obtained via an end-to-end trained deep learning (DL) model. We provide a variational derivation of RDMM, showing that the model can assure diffeomorphic transformations in the continuum, and that LDDMM is a particular instance of RDMM. To evaluate RDMM performance we experiment 1) on synthetic 2D data and 2) on two 3D datasets: knee magnetic resonance images (MRIs) of the Osteoarthritis Initiative (OAI) and computed tomography images (CT) of the lung. Results show that our framework achieves comparable performance to state-of-the-art image registration approaches, while providing additional information via a learned spatio-temporal regularizer. Further, our deep learning approach allows for very fast RDMM and LDDMM estimations. Code is available at https://github.com/uncbiag/registration.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Astrocytes: the importance of region-specific allocation
    不详
    NEUROSCIENTIST, 2012, 18 (06): : 553 - 553
  • [32] THE STRATEGY OF REGION-SPECIFIC DEVELOPMENT IN ITALY
    NANETTI, RY
    GEOFORUM, 1987, 18 (01) : 81 - 88
  • [33] Mapping Region-Specific Longitudinal Cortical Surface Expansion from Birth to 2 Years of Age
    Li, Gang
    Nie, Jingxin
    Wang, Li
    Shi, Feng
    Lin, Weili
    Gilmore, John H.
    Shen, Dinggang
    CEREBRAL CORTEX, 2013, 23 (11) : 2724 - 2733
  • [34] Whole-Brain Vascular Architecture Mapping Identifies Region-Specific Microvascular Profiles in Vivo
    Hohmann, Anja
    Zhang, Ke
    Mooshage, Christoph M.
    Jende, Johann M. E.
    Rotkopf, Lukas T.
    Schlemmer, Heinz-Peter
    Bendszus, Martin
    Wick, Wolfgang
    Kurz, Felix T.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2024, 45 (09) : 1346 - 1354
  • [35] Mapping region-specific seizure-like patterns in the in vitro isolated guinea pig brain
    Uva, Laura
    Aracri, Patrizia
    Forcaia, Greta
    de Curtis, Marco
    EXPERIMENTAL NEUROLOGY, 2021, 342
  • [36] A CHROMOSOME REGION-SPECIFIC MAPPING STRATEGY REVEALS GENE-RICH TELOMERIC ENDS IN WHEAT
    GILL, KS
    GILL, BS
    ENDO, TR
    CHROMOSOMA, 1993, 102 (06) : 374 - 381
  • [37] Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging
    Ceritoglu, Can
    Oishi, Kenichi
    Li, Xin
    Chou, Ming-Chung
    Younes, Laurent
    Albert, Marilyn
    Lyketsos, Constantine
    van Zijl, Peter C. M.
    Miller, Michael I.
    Mori, Susumu
    NEUROIMAGE, 2009, 47 (02) : 618 - 627
  • [38] Gauss-Newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping
    Hernandez, Monica
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (20): : 6085 - 6115
  • [39] Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping
    Risser, Laurent
    Vialard, Francois-Xavier
    Wolz, Robin
    Murgasova, Maria
    Holm, Darryl D.
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (10) : 1746 - 1759
  • [40] Region-Specific Estimates of the Determinants of Residential Investment
    Choy, Lennon H. T.
    Ho, Winky K. O.
    Mak, Stephen W. K.
    JOURNAL OF URBAN PLANNING AND DEVELOPMENT-ASCE, 2011, 137 (01): : 1 - 6