Energy and exergy analysis of NH3/CO2 cascade refrigeration system with subcooling in the low-temperature cycle based on an auxiliary loop of NH3 refrigerants

被引:17
|
作者
Chen, Xiaonan [1 ]
Yang, Qichao [1 ]
Chi, Weikai [1 ]
Zhao, Yuanyang [1 ]
Liu, Guangbin [1 ]
Li, Liansheng [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Cascade refrigeration system; Subcooling; Energy and exergy analysis; Mechanical subcooling; INTERNAL HEAT-EXCHANGER; PERFORMANCE; OPTIMIZATION; ECONOMIZER; PLANT;
D O I
10.1016/j.egyr.2022.01.004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a NH3/CO2 cascade refrigeration system that sets an auxiliary refrigeration loop in the high-temperature cycle to increase the subcooling degree in the low-temperature cycle (CRSS). Based on the basic principles of thermodynamics, a mathematical model is established and theoretical simulation is carried out to obtain the influence of key parameters on the cycle performance. Compared with the conventional cascade refrigeration system (CCRS), the conclusions find that there exists an optimal condensation temperature of low-temperature cycle (T-MC.opt) to maximize COP. The maximum COP of CRSS is 4.58% higher than that of CCRS when the subcooling degree is 10 degrees C. The maximum exergy efficiency is 0.391, increasing by 4.40%. With the increase of the subcooling degree, both the COP and the T-MC. opt of CRSS increase. When the subcooling degree increases from 5 degrees C to 15 degrees C, the performance increment increases from 2.73% to 6.00%. When the evaporation temperature of the system changes, both the COP and exergy efficiency decreases slightly and it is found that the performance is better when the evaporation temperature is lower when condensation temperature is kept constant. Besides, the discharge temperature of the NH3 compressor in CRSS can be reduced by 9.9 degrees C when the evaporation temperature is -30 degrees C. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:1757 / 1767
页数:11
相关论文
共 50 条
  • [1] Performance evaluation of NH3/CO2 cascade refrigeration system with ejector subcooling for low-temperature cycle
    Chi, Weikai
    Yang, Qichao
    Chen, Xiaonan
    Liu, Guangbin
    Zhao, Yuanyang
    Li, Liansheng
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 136 : 162 - 171
  • [2] Performance analysis of a CO2/NH3 cascade refrigeration system with subcooling for low temperature freezing applications
    Vaishak, S.
    Singha, Prosenjit
    Dasgupta, Mani Sankar
    Hafner, Armin
    Widell, Kristina
    Bhattacharyya, Souvik
    Saini, Santosh Kumar
    Arun, B. S.
    Samuel, Manoj P.
    Ninan, George
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 153 : 140 - 154
  • [3] Thermodynamic Analysis of an NH3/CO2 Cascade Refrigeration System with Subcooling in the Low-Temperature Circuit Utilizing the Expansion Work
    Yang, Qichao
    Chen, Xiaonan
    Chi, Weikai
    Li, Liansheng
    Liu, Guangbin
    Zhao, Yuanyang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [4] Advanced exergy analysis of NH3/CO2 cascade refrigeration system with ejector
    Chi, Weikai
    Yang, Qichao
    Chen, Xiaonan
    Li, Liansheng
    Liu, Guangbin
    Zhao, Yuanyang
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 145 : 185 - 195
  • [5] The Entropy Analysis on NH3/CO2 Cascade Refrigeration Cycle
    Xie, Yingbai
    Cui, Kuikui
    Zong, Luxiang
    Wang, Zhichao
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 823 - 828
  • [6] Thermodynamic analysis of a NH3/CO2 cascade refrigeration system
    Wang, Xiao-Fei
    Zhang, Wei-Min
    Lu, Yun-Zhuang
    Yan, Gang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (10): : 2092 - 2096
  • [7] Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems
    Rezayan, Omid
    Behbahaninia, Ali
    ENERGY, 2011, 36 (02) : 888 - 895
  • [8] Analysis of thermodynamic performance in NH3/CO2 Cascade refrigeration system
    Duan Rui
    Cui Guomin
    Zhu Qunzhi
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1484 - +
  • [9] PERFORMANCE OF NH3/CO2 CASCADE REFRIGERATION SYSTEM WITH EJECTOR
    Pratihar, A. K.
    Joshi, Rachit
    12TH IIR GUSTAV LORENTZEN NATURAL WORKING FLUIDS CONFERENCE, 2016, : 194 - 201
  • [10] A Parametric Study on a Subcritical CO2/NH3 Cascade Refrigeration System for Low Temperature Applications
    Yilmaz, Baris
    Mancuhan, Ebru
    Erdonmez, Nasuh
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (09):