On the length spectrums of non-compact Riemann surfaces

被引:0
|
作者
Liu, LX [1 ]
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the length spectrum metric is topologically equivalent to the Teichmuller metric in Teichmuller space T(g, m, n). This result solved a problem suggested by Sorvali [9] in 1972.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [41] The number of critical elements of discrete Morse functions on non-compact surfaces
    Ayala, R.
    Fernandez, L. M.
    Vilches, J. A.
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) : 90 - 101
  • [42] Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces
    Boughariou, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 603 - 616
  • [43] The Resultant on Compact Riemann Surfaces
    Björn Gustafsson
    Vladimir G. Tkachev
    Communications in Mathematical Physics, 2009, 286 : 313 - 358
  • [44] FAMILIES OF COMPACT RIEMANN SURFACES
    Hemasundar, Gollakota V. V.
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (03): : 727 - 731
  • [45] AUTOMORPHISMS OF COMPACT RIEMANN SURFACES
    LEWITTES, J
    AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (04) : 734 - &
  • [46] DIAMETERS OF COMPACT RIEMANN SURFACES
    CHANG, FR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 65 (02) : 274 - 276
  • [47] Symmetries of Compact Riemann Surfaces
    Bujalance, Emilio
    Javier Cirre, Francisco
    Manuel Gamboa, Jose
    Gromadzki, Grzegorz
    SYMMETRIES OF COMPACT RIEMANN SURFACES, 2010, 2007 : 1 - +
  • [48] Diameter of Compact Riemann Surfaces
    Stepanyants, Huck
    Beardon, Alan
    Paton, Jeremy
    Krioukov, Dmitri
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [49] The Resultant on Compact Riemann Surfaces
    Gustafsson, Bjorn
    Tkachev, Vladimir G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (01) : 313 - 358
  • [50] Introduction to Compact Riemann Surfaces
    Bobenko, Alexander I.
    COMPUTATIONAL APPROACH TO RIEMANN SURFACES, 2011, 2013 : 3 - 64