MnO2/porous carbon film/Ni electrodes with high-quality interface for high rate and performance flexible supercapacitors

被引:18
|
作者
Hu, Minglei [1 ]
Liu, Yuhao [1 ]
Zhang, Min [1 ]
Wei, Helin [1 ]
Gao, Yihua [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
关键词
MnO2/porous carbon film/Ni foil; Flexible supecapacitor; Buffer layer; LINE-FILTERING PERFORMANCE; HIGH-ENERGY-DENSITY; ASYMMETRIC SUPERCAPACITORS; THIN-FILM; ELECTROCHEMICAL CAPACITORS; STORAGE; FABRICATION; COMPOSITES; BEHAVIOR; GROWTH;
D O I
10.1016/j.electacta.2016.09.111
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, MnO2/porous carbon film/Ni foil are fabricated for flexible supecapacitors (FSCs), in which the porous carbon film (PCF) serves as a buffer layer to facilitate the loading of the MnO2 and reduce the interfacial stress. The MnO2/PCF/Ni electrodes demonstrate a high-quality and stable interface. Microstructure observations show that the MnO2 film has a dense 2D structure with a hierarchically porous surface, which provides a large surface area for charge storage. The FSC based on MnO2/PCF/Ni electrode exhibits high-energy/power density, ultrahigh rate capability, wide frequency range, extraordinary flexibility, and superior cycle lifetime. Area (volumetric) specific capacitance of the MnO2/PCF/Ni electrode reaches 87 mF cm (2) (435 F cm (3)). Maximum volumetric energy (power) density of the supercapacitor reaches 38.65 mWh cm (3) (8.26 W cm (3)). Furthermore, the FSC has a very short time constant (0.3 similar to 0.5 ms) and exhibits minimal change in capacitance under dynamic bending. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 50 条
  • [11] MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes
    Li, Huailong
    Jiang, Lixue
    Cheng, Qilin
    He, Ying
    Pavlinek, Vladimir
    Saha, Petr
    Li, Chunzhong
    ELECTROCHIMICA ACTA, 2015, 164 : 252 - 259
  • [12] Sandwich structured MnO2/carbon nanosheet/MnO2 composite for high-performance supercapacitors
    Hong, Xiaodong
    Wang, Xu
    Li, Yang
    Fu, Jiawei
    Liang, Bing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 889
  • [13] Porous MnO2–CNTs–Cellophane Nanocomposite for High-Voltage Flexible Supercapacitors
    Rezvan Rostami
    Masoud Faraji
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 3438 - 3447
  • [14] MnO2/Porous Carbon Nanotube/MnO2 Nanocomposites for High-Performance Supercapacitor
    Wang, Jiahao
    Guo, Xihong
    Cui, Rongli
    Huang, Huan
    Liu, Bing
    Li, Ying
    Wang, Dan
    Zhao, Dangui
    Dong, Jinquan
    Li, Shucun
    Sun, Baoyun
    ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11152 - 11159
  • [15] High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors
    Fan, Xingye
    Wang, Xiaolei
    Li, Ge
    Yu, Aiping
    Chen, Zhongwei
    JOURNAL OF POWER SOURCES, 2016, 326 : 357 - 364
  • [16] Cyclic voltammetric formation of hollow porous γ-MnO2 microspheres as stable electrodes for high-performance supercapacitors
    Wu, Mao-Sung
    Hong, Li-Rong
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [17] MnO2/SWCNT buckypaper for high performance supercapacitors
    Gupta, Vinay
    Kumar, S.
    JOURNAL OF ENERGY STORAGE, 2019, 26
  • [18] Self-grown MnO2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes
    Dang, Wenhui
    Dong, Chengjun
    Zhang, Zhifang
    Chen, Gang
    Wang, Yude
    Guan, Hongtao
    ELECTROCHIMICA ACTA, 2016, 217 : 16 - 23
  • [19] Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors
    Chen, Ya
    Guan, Jie-Hao
    Gan, Hui
    Chen, Bai-Zhen
    Shi, Xi-Chang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (01) : 105 - 113
  • [20] Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors
    Ya Chen
    Jie-Hao Guan
    Hui Gan
    Bai-Zhen Chen
    Xi-Chang Shi
    Journal of Applied Electrochemistry, 2018, 48 : 105 - 113