We study positive radial solutions of quasilinear elliptic systems with a gradient term in the form {Delta(p)u( )= v(m) vertical bar del u vertical bar(alpha)( in Omega,) Delta(p)v = v(beta)vertical bar del u vertical bar(q )in Omega, where Omega subset of R-N (N >= 2) is either a ball or the whole space, 1 < p < infinity, m, q > 0, alpha >= 0, 0 <= beta <= m in and (p - 1 - alpha)(p - 1 - beta) - qm not equal 0. We first classify all the positive radial solutions in case Omega is a ball, according to their behavior at the boundary. Then we obtain that the system has nonconstant global solutions if and only if 0 <= alpha < p -1 and mq < (p -1 -alpha) (p -1 -beta). Finally we, describe the precise behavior at infinity for such positive global radial solutions by using properties of three component cooperative and irreducible dynamical systems.
机构:
Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 4, place Jussieu, Paris,75252 Cedex 05, FranceLaboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 4, place Jussieu, Paris,75252 Cedex 05, France
机构:
Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
Jinling Inst technol, Dept Basic Educ, Nanjing 210001, Peoples R ChinaNanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
Zhang, Rui
Yang, Zuodong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
Nanjing Normal Univ, Coll Zhongbei, Nanjing 210046, Peoples R ChinaNanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Peoples R China
机构:
North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R ChinaNorth China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R China
机构:Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
García-Melián, J
Rossi, JD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina