Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry-Perot Microcavity

被引:17
|
作者
Takele, Wassie Mersha [1 ,2 ,3 ]
Wackenhut, Frank [1 ,2 ]
Piatkowski, Lukasz [3 ,4 ]
Meixner, Alfred J. [1 ,2 ]
Waluk, Jacek [3 ,5 ]
机构
[1] Univ Tubingen, Inst Phys & Theoret Chem, D-72076 Tubingen, Germany
[2] Univ Tubingen, LISA, D-72076 Tubingen, Germany
[3] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland
[4] Poznan Univ Tech, Fac Mat Engn & Tech Phys, PL-60965 Poznan, Poland
[5] Cardinal Stefan Wyszynski Univ, Fac Math & Sci, PL-01815 Warsaw, Poland
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2020年 / 124卷 / 27期
基金
欧盟地平线“2020”;
关键词
LIGHT-MATTER INTERACTION; CHEMISTRY; HYBRIDIZATION; MOLECULES; RAMAN;
D O I
10.1021/acs.jpcb.0c03815
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The strong coupling of an IR-active molecular transition with an optical mode of the cavity results in vibrational polaritons, which opens a new way to control chemical reactivity via confined electromagnetic fields of the cavity. In this study, we design a voltage-tunable open microcavity and we show the formation of multiple vibrational polaritons in methyl salicylate. A Rabi splitting and polariton anticrossing behavior is observed when the cavity mode hybridizes with the C=O stretching vibration of methyl salicylate. Furthermore, the proposed theoretical model based on coupled harmonic oscillators reveals that the absorption of uncoupled molecules must also be considered to model the experimental spectra properly and that simultaneous coupling of multiple molecular vibrations to the same cavity mode has a significant influence on the transmission spectral profile.
引用
收藏
页码:5709 / 5716
页数:8
相关论文
共 50 条
  • [41] Post-Processing of Fabry-Perot Microcavity Tip Sensor
    Ferreira, Marta S.
    Bierlich, Joerg
    Unger, S.
    Schuster, Kay
    Santos, Jose Luis
    Frazao, Orlando
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (16) : 1593 - 1596
  • [42] Mode Coupling in a Fabry-Perot Open Resonator
    Salski, Bartlomiej
    Czekala, Piotr
    Karpisz, Tomasz
    Kopyt, Pawel
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (01) : 299 - 306
  • [43] TIME JITTER IN MULTIMODE FABRY-PEROT LASER-DIODES
    DOTTAVI, A
    MECOZZI, A
    SPANO, P
    APPLIED PHYSICS LETTERS, 1988, 53 (24) : 2362 - 2364
  • [44] Fabry-Perot microcavity resonates over large, continuous spectral ranges
    不详
    LASER FOCUS WORLD, 2017, 53 (01): : 7 - 7
  • [45] A Dual-Parameter Internally Calibrated Fabry-Perot Microcavity Sensor
    Zhu, Chen
    Gerald, Rex E., II
    Huang, Jie
    IEEE SENSORS JOURNAL, 2020, 20 (05) : 2511 - 2517
  • [46] Lithium Niobate Fabry-Perot microcavity based on strip loaded waveguides
    Kotlyar, Maria, V
    Iadanza, Simone
    O'Faolain, Liam
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2021, 43
  • [47] Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film
    Lee, Cheng-Ling
    Hsu, Jui-Ming
    Horng, Jing-Shyang
    Sung, Wei-Yi
    Li, Chai-Ming
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (09) : 833 - 836
  • [48] In-line Fabry-Perot refractive index sensor based on microcavity
    徐峰
    卢璐
    吕卫卫
    俞本立
    Chinese Optics Letters, 2013, 11 (08) : 1 - 4
  • [49] Microcavity InGaN light emitting diodes with a single Fabry-Perot mode
    Choi, Yong-Seok
    Iza, Michael
    Koblmueller, Gregor
    Hurni, Christophe
    Speck, James S.
    Weisbuch, Claude
    Hu, Evelyn L.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 6, 2008, 5 (06): : 2306 - +
  • [50] DNA Melting Analysis with Optofluidic Lasers Based on Fabry-Perot Microcavity
    Hou, Mengdi
    Liang, Xiyue
    Zhang, Tingting
    Qiu, Chengyu
    Chen, Jingdong
    Liu, Shaoding
    Wang, Wenjie
    Fan, Xudong
    ACS SENSORS, 2018, 3 (09): : 1750 - 1755