Second-Harmonic Generation from Hyperbolic Plasmonic Nanorod Metamaterial Slab

被引:45
|
作者
Marino, Giuseppe [1 ,2 ]
Segovia, Paulina [1 ,3 ]
Krasavin, Alexey V. [1 ]
Ginzburg, Pavel [1 ,4 ]
Olivier, Nicolas [1 ,5 ]
Wurtz, Gregory A. [1 ,6 ]
Zayats, Anatoly V. [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ Paris Diderot, CNRS, Mat & Phenomenes Quant, F-75013 Paris, France
[3] CICESE, Dept Opt, Ensenada, Baja California, Mexico
[4] Tel Aviv Univ, Dept Elect Engn, IL-69978 Ramat Aviv, Israel
[5] Univ Sheffield, Dept Phys & Astron, Sheffield S10 2TN, S Yorkshire, England
[6] Univ North Florida, Dept Phys, Jacksonville, FL 32224 USA
基金
英国工程与自然科学研究理事会;
关键词
hyperbolic metamaterials; plasmonics; second harmonic generation; INVERSION SYMMETRY; NANOSTRUCTURES; ENHANCEMENT; MICROSCOPY; REFLECTION; ANTENNA; SURFACE; MEDIA; LIGHT;
D O I
10.1002/lpor.201700189
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperbolic plasmonic metamaterials provide numerous opportunities for designing unusual linear and nonlinear optical properties. In this work, second-harmonic generation in a hyperbolic metamaterial due to a free-electron nonlinear response of a plasmonic component of the metamaterial is studied. It is shown that owing to a rich modal structure of an anisotropic plasmonic metamaterial slab, the overlap of fundamental and second-harmonic modes results in the broadband enhancement of radiated second-harmonic intensity by up to 2 orders of magnitude for TM- and TE-polarized fundamental light, compared to a smooth Au film under TM-polarised illumination. Compared to the radiated second-harmonic intensity from a bulk LiNbO3 nonlinear crystal of the same thickness, the SHG intensity from a metamaterial slab may be up to 2 orders of magnitude higher at the certain metamaterial resonances. The results open up possibilities to design tuneable frequency-doubling integratable metamaterial with the goal to overcome limitations associated with classical phase matching conditions in thick nonlinear crystals.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Second-harmonic generation from ZnO nanowires
    Pedersen, K.
    Fisker, C.
    Pedersen, T. G.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 8, 2008, : 2671 - 2674
  • [32] Second-harmonic generation from singular metasurfaces
    Yang, Fan
    Ciraci, Cristian
    PHYSICAL REVIEW B, 2022, 105 (23)
  • [33] Metamaterial for the Second Harmonic Generation
    Savchenko, G. M.
    Dudelev, V. V.
    Soboleva, K. K.
    Lundin, V. V.
    Sakharov, A. V.
    Deryagin, A. G.
    Kuchinskii, V. I.
    Averkiev, N. S.
    Sokolovskii, G. S.
    2016 INTERNATIONAL CONFERENCE LASER OPTICS (LO), 2016,
  • [34] Giant Second-Harmonic Generation in Cantor-like Metamaterial Photonic Superlattices
    Reyes Gomez, Faustino
    Porras-Montenegro, Nelson
    Oliveira, Osvaldo N., Jr.
    Ricardo Mejia-Salazar, J.
    ACS OMEGA, 2018, 3 (12): : 17922 - 17927
  • [35] SECOND-HARMONIC GENERATION IN MOLYBDATES
    JEGGO, CR
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (11): : L133 - +
  • [36] Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces
    BIN FANG
    HANMENG LI
    SHINING ZHU
    TAO LI
    Photonics Research , 2020, (08) : 1296 - 1300
  • [37] Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces
    Fang, Bin
    Li, Hanmeng
    Zhu, Shining
    Li, Tao
    PHOTONICS RESEARCH, 2020, 8 (08) : 1296 - 1300
  • [38] Second-harmonic generation in hexagonally-poled lithium niobate slab waveguides
    Gallo, K
    Bratfalean, RT
    Peacock, AC
    Broderick, NGR
    Gawith, CBE
    Ming, L
    Smith, PGR
    Richardson, DJ
    ELECTRONICS LETTERS, 2003, 39 (01) : 75 - 76
  • [39] Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces
    BIN FANG
    HANMENG LI
    SHINING ZHU
    TAO LI
    Photonics Research, 2020, 8 (08) : 1296 - 1300
  • [40] Quasipatterns in second-harmonic generation
    Longhi, S
    PHYSICAL REVIEW E, 1999, 59 (01) : R24 - R27