Enhanced Optical Trapping and Arrangement of Nano-Objects in a Plasmonic Nanocavity

被引:162
|
作者
Chen, Chang [1 ,2 ]
Juan, Mathieu L. [5 ]
Li, Yi [1 ,3 ]
Maes, Guido [2 ]
Borghs, Gustaaf [1 ,4 ]
Van Dorpe, Pol [1 ,3 ]
Quidant, Romain [5 ,6 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
[4] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium
[5] ICFO Inst Ciences Foton, Castelldefels 08860, Spain
[6] ICREA, Barcelona 08010, Spain
关键词
Plasmonics; optical trapping; nanopore; arrangement; NANOPARTICLES; FORCE; LIGHT; PHOTOLITHOGRAPHY; SCATTERING; RESONANCE;
D O I
10.1021/nl2031458
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gentle manipulation of micrometer-sized dielectric objects with optical forces has found many applications in both life and physical sciences. To further extend optical trapping toward the true nanometer scale, we present an original approach combining self-induced back action (SIBA) trapping with the latest advances in nanoscale plasmon engineering. The designed resonant trap, formed by a rectangular plasmonic nanopore, is successfully tested on 22 nm polystyrene beads, showing both single- and double-bead trapping events. The mechanism responsible for the higher stability of the double-bead trapping is discussed, in light of the statistical analysis of the experimental data and numerical calculations. Furthermore, we propose a figure of merit that we use to quantify the achieved trapping efficiency and compare it to prior optical nanotweezers. Our approach may open new routes toward ultra-accurate immobilization and arrangement of nanoscale objects, such as biomolecules.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 50 条
  • [41] Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS
    Spadaro, D.
    Iati, M. A.
    Perez-Pineiro, J.
    Vazquez-Vazquez, C.
    Correa-Duarte, M. A.
    Donato, M. G.
    Gucciardi, P. G.
    Saija, R.
    Strangi, G.
    Marago, O. M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01): : 691 - 700
  • [42] Quantitative absorption spectroscopy of nano-objects
    Berto, Pascal
    Bermudez Urena, Esteban
    Bon, Pierre
    Quidant, Romain
    Rigneault, Herve
    Baffou, Guillaume
    PHYSICAL REVIEW B, 2012, 86 (16):
  • [43] Motion of nano-objects on polymer brushes
    Santer, S
    Rühe, J
    POLYMER, 2004, 45 (25) : 8279 - 8297
  • [44] Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips
    Qiu, Guangyu
    Du, Ying
    Guo, Yujia
    Meng, Yingchao
    Gai, Zhibo
    Zhang, Ming
    Wang, Jing
    deMello, Andrew
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (42) : 47409 - 47419
  • [45] Molecular Identification of Individual Nano-Objects
    Pinnick, Veronica T.
    Verkhoturov, Stanislav V.
    Kaledin, Leonid
    Bisrat, Yordanos
    Schweikert, Emile A.
    ANALYTICAL CHEMISTRY, 2009, 81 (18) : 7527 - 7531
  • [46] Motion of nano-objects on sticky surfaces
    Santer, Svetlana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [47] Unusual Diamagnetism in Semiconductor Nano-Objects
    Thu, L. M.
    Voskoboynikov, O.
    PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON NARROW GAP SEMICONDUCTORS AND SYSTEMS, 2010, 3 (02): : 1133 - 1137
  • [48] Electrochemical modification of individual nano-objects
    Knez, M
    Sumser, M
    Bittner, AM
    Wege, C
    Jeske, H
    Kooi, S
    Burghard, M
    Kern, K
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 522 (01): : 70 - 74
  • [49] Phosphorus dendrimers: Nano-objects for nanosciences
    Majoral, JP
    Turrin, CO
    Laurent, R
    Caminade, AM
    MACROMOLECULAR SYMPOSIA, 2005, 229 : 1 - 7
  • [50] Light responsive soft nano-objects
    Santer, Svetlana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256