Efficient framework for deformable 2D-3D registration

被引:1
|
作者
Fluck, Oliver [1 ,3 ]
Aharon, Shmuel [2 ]
Khamene, Ali [1 ]
机构
[1] Siemens Corp Res, Imaging & Visualizat Dept, Princeton, NJ 08540 USA
[2] Siemens Med Solut, Oncol Care Syst, Malvern, PA 19355 USA
[3] Otto Von Guericke Univ, D-39106 Magdeburg, Germany
关键词
radiation therapy; 2D-3D; registration; GPU; volume deformation; back projection; CT; X-ray;
D O I
10.1117/12.772911
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Colonoscopy 3D video dataset with paired depth from 2D-3D registration
    Bobrow, Taylor L.
    Golhar, Mayank
    Vijayan, Rohan
    Akshintala, Venkata S.
    Garcia, Juan R.
    Durr, Nicholas J.
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 90
  • [42] 2D-3D Registration With Weighted Local Mutual Information in Vascular Interventions
    Meng, Cai
    Wang, Qi
    Guan, Shaoya
    Sun, Kai
    Liu, Bo
    [J]. IEEE ACCESS, 2019, 7 : 162629 - 162638
  • [43] NON-RIGID 2D-3D REGISTRATION USING CONVOLUTIONAL AUTOENCODERS
    Li, Peixin
    Pei, Yuru
    Guo, Yuke
    Ma, Gengyu
    Xu, Tianmin
    Zha, Hongbin
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 700 - 704
  • [44] Multi-modal 2D-3D non-rigid registration
    Pruemmer, M.
    Hornegger, J.
    Pfister, M.
    Doerfler, A.
    [J]. MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [45] How network structures affect the 2D-3D registration of cardiovascular images
    Ma, Limei
    Nie, Yang
    Feng, Qian
    Cao, Jianshu
    Guan, Shaoya
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [46] Evaluation of a 2D-3D registration method for external beam radiation therapy
    Jans, H.
    Syme, A.
    Rathee, S.
    Fallone, B.
    [J]. MEDICAL PHYSICS, 2006, 33 (06) : 2208 - 2208
  • [47] 2D-3D registration of coronary angiograms for cardiac procedure planning and guidance
    Turgeon, GA
    Lehmann, G
    Guiraudon, G
    Drangova, M
    Holdsworth, D
    Peters, T
    [J]. MEDICAL PHYSICS, 2005, 32 (12) : 3737 - 3749
  • [48] Fast 2D-3D registration using GPU-based preprocessing
    Kim, K
    Park, S
    Hong, H
    Shin, YG
    [J]. Healthcom 2005: 7th International Workshop on Enterprise Networking and Computing in Healthcare Industry, Proceedings, 2005, : 139 - 143
  • [49] New CTA protocol and 2D-3D registration method for liver catheterization
    Groher, Martin
    Padoy, Nicolas
    Jakobs, Tobias F.
    Navab, Nassir
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 1, 2006, 4190 : 873 - 881
  • [50] 2D-3D Point Set Registration Based on Global Rotation Search
    Liu, Yinlong
    Dong, Yuan
    Song, Zhijian
    Wang, Manning
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (05) : 2599 - 2613