Poly (amidoamine) generation 6 functionalized Fe3O4@SiO2/GPTMS core-shell magnetic NPs as a new adsorbent for Arsenite adsorption: kinetic, isotherm and thermodynamic studies

被引:6
|
作者
Akbari, Hamed [1 ]
Gholami, Mitra [2 ,3 ]
Akbari, Hesam [1 ]
Adibzadeh, Amir [1 ]
Taghavi, Lobat [4 ]
Hayati, Bagher [5 ]
Nazari, Shahram [1 ]
机构
[1] Baqiyatallah Univ Med Sci, Hlth Res Ctr, Lifestyle Inst, Tehran, Iran
[2] Iran Univ Med Sci, Res Ctr Environm Hlth Technol, Tehran, Iran
[3] Iran Univ Med Sci, Sch Publ Hlth, Dept Environm Hlth Engn, Tehran, Iran
[4] Islamic Azad Univ, Fac Nat Resources & Environm, Dept Environm Pollut, Sci & Res Branch, Tehran, Iran
[5] Khalkhal Univ Med Sci, Dept Environm Hlth Engn, Khalkhal, Iran
关键词
Poly (amidoamine) generation 6; Arsenite; Isotherm; Kinetic; AQUEOUS-SOLUTIONS; WASTE-WATER; REMOVAL; CU2+; NI2+; NANOCOMPOSITE; OPTIMIZATION; PERFORMANCE; EXTRACTION; SURFACE;
D O I
10.1007/s40201-020-00461-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this survey a new route has been developed the preparation of poly (amidoamine) generation 6 (PAMAM-G6) dendrimer functionalized Fe3O4/SiO2 nanoparticle and was used for arsenite (As (III)) adsorption. SiO2 was first grafted onto the surface of Fe3O4 to formation a core-shell structure. Then the introduction of epoxy rings were done by hydrolysis of methylsilane groups of 3-Glycidoxypropyltrimethoxysilane (GPTMS) on OH groups of SiO2 and afterwards, PAMAM-G6 reacted with epoxy rings of GPTMS to obtain a multiamino magnetic adsorbent. The as-prepared nanocomposite was characterized by TEM, Zeta potential, FESEM, VSM, FTIR, Raman and XPS techniques. The effects of reaction time from 5 to 50 min, initial As (III) concentration in the range of 1-10 mgL(-1), initial adsorbent concentration in the range of 10-50 mgL(-1) and initial pH in the range 3-8 were studied. The resulting of kinetic and isotherm models displays high adsorption affinity (233 mg/g) for As (III) and the adsorbent can reach the adsorbent can reach the adsorption equilibrium at a neutral pH (7). The As (III) loaded nanocomposite could be separated readily from aqueous solution by magnetic and regenerated simply via NaOH. The study of the adsorption procedure showed that the pseudo-second order kinetics and Langmuir isotherm well-fitted with the experimental data of As (III) adsorption onto nanocomposite.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 50 条
  • [31] Fe3O4@SiO2 Core-shell Nanoparticles: Synthesis, Characterization and Application in Environmental Remediation
    Majeed, J.
    Ramkumar, Jayshree
    Chandramouleeswaran, S.
    Tyagi, A. K.
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 : 605 - 607
  • [32] Catalytic activity of core-shell structured Cu/Fe3O4@SiO2 microsphere catalysts
    Ji, Junhong
    Zeng, Penghui
    Ji, Shengfu
    Yang, Wei
    Liu, Hongfei
    Li, Yingyi
    CATALYSIS TODAY, 2010, 158 (3-4) : 305 - 309
  • [33] Au-coated Fe3O4@SiO2 core-shell particles with photothermal activity
    Kang M.
    Kim Y.
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600
  • [34] Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties
    Morel, Anne-Laure
    Nikitenko, Sergei I.
    Gionnet, Karine
    Wattiaux, Alain
    Lai-Kee-Him, Josephine
    Labrugere, Christine
    Chevalier, Bernard
    Deleris, Gerard
    Petibois, Cyril
    Brisson, Alain
    Simonoff, Monique
    ACS NANO, 2008, 2 (05) : 847 - 856
  • [35] Synthesis of Chain-Like and Core-Shell Spherical Fe3O4@SiO2 Complex
    Yu-Xiang, Yang
    Li-Ping, Zhang
    Xiao-Cui, Xie
    Ya-Ni, Zhang
    Jian-Guo, Shao
    Xiang-Nong, Liu
    ADVANCED SCIENCE LETTERS, 2011, 4 (01) : 96 - 103
  • [36] Fabrication and Characterization of Core-shell Fe3O4@SiO2 Nanoparticles with High Magnetic Sensitivity from Electrospun Nanoflbers
    Zhang Pei-pei
    Wang Bin
    Lou Shao-feng
    Tian Li-qiang
    Quan Jing
    Nie Hua-li
    Zhu Li-Min
    2012 INTERNATIONAL FORUM ON BIOMEDICAL TEXTILE MATERIALS, PROCEEDINGS, 2012, : 150 - 153
  • [37] Preparation and adsorption of gold nanoparticles onto functionalized Fe3O4@SiO2 magnetic nanocomposites
    Jiang, Hongrong
    Zeng, Xin
    Li, Chuanyan
    Liu, Ming
    He, Nongyue
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [38] Functionalized nano magnetic Fe3O4-SiO2 core-shell as efficient adsorbent for removal of Pb2+ from aqueous solutions
    Baghkumeh, A. Mokhtari
    Faghihian, H.
    Mokhtari, Sh.
    DESALINATION AND WATER TREATMENT, 2017, 78 : 166 - 171
  • [39] Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles
    Cai, Wanling
    Guo, Mengyu
    Weng, Xiulan
    Zhang, Wei
    Chen, Zuliang
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 98 : 65 - 73
  • [40] Naphthalimide-functionalized Fe3O4@SiO2 core/shell nanoparticles for selective and sensitive adsorption and detection of Hg2+
    Zhu, Baocun
    Zhao, Jie
    Yu, Haiqin
    Yan, Liangguo
    Wei, Qin
    Du, Bin
    CHEMICAL ENGINEERING JOURNAL, 2013, 219 : 411 - 418