Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method

被引:54
|
作者
Alajmi, Mahdi S. [1 ]
Almeshal, Abdullah M. [2 ]
机构
[1] Publ Author Appl Educ & Training, Coll Technol Studies, Dept Mfg Engn Technol, Safat 13092, Kuwait
[2] Publ Author Appl Educ & Training, Coll Technol Studies, Dept Elect Engn Technol, Safat 13092, Kuwait
关键词
adaptive neuro-fuzzy inference system; turning process; surface roughness; machine learning; quantum particle swarm optimization; ANFIS-QPSO; ANN; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; MODEL; ALGORITHM; STEEL; PERFORMANCE; PARAMETERS; TAGUCHI; RSM;
D O I
10.3390/ma13132986
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accuracy, robustness and fast convergence towards global optima. Simulations revealed that ANFIS-QPSO results in accurate prediction of surface roughness with RMSE = 4.86%, MAPE = 4.95% and R-2= 0.984 for the dry turning process. Similarly, for the cryogenic turning process, ANFIS-QPSO resulted in surface roughness predictions with RMSE = 5.08%, MAPE = 5.15% and R-2= 0.988 that are of high agreement with the measured values. Performance comparisons between ANFIS-QPSO, ANFIS, ANFIS-GA and ANFIS-PSO suggest that ANFIS-QPSO is an effective method that can ensure a high prediction accuracy of surface roughness values for dry and cryogenic turning processes.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] Surface Roughness Optimization in Drilling Process Using Response Surface Method (RSM)
    Amran, Mohd
    Salmah, Siti
    Sanusi, Mohd
    Yuhazri, Mohd
    Mohamad, Noraiham
    Azam, Mohd Asyadi'
    Abdullah, Zulkeflee
    Mohamad, Effendi
    JURNAL TEKNOLOGI, 2014, 66 (03): : 29 - 35
  • [22] Prediction of surface roughness and MRR in grinding process on Inconel 800 alloy using neural networks and ANFIS
    Varma, N. Sudheer Kumar
    Varma, I. R. P. K.
    Rajesh, S.
    Raju, K. Sita Rama
    Murali, V. V.
    Raju, Krishnam
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) : 5445 - 5451
  • [23] Surface Roughness Prediction in Grinding Ti using ANFIS Hybrid Algorithm
    Stephen, Deborah Serenade
    Prabhu, Sethuramalingam
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2022, 29 (05) : 668 - 677
  • [24] Surface Roughness Optimization of Some Machining Parameters in Turning Operations using Taguchi Method
    Dagwa, I. M.
    ADVANCES IN MATERIALS AND SYSTEMS TECHNOLOGIES II, 2009, 62-64 : 613 - 620
  • [25] Application of the Taguchi method for surface roughness predictions in the turning process
    Ozturk, Sabri
    MATERIALS TESTING, 2016, 58 (09) : 782 - 787
  • [26] Optimization of the Surface Roughness and Chip Compression Ratio of Duplex Stainless Steel in a Wet Turning Process Using the Taguchi Method
    Gyliene, Virginija
    Brasas, Algimantas
    Ciuplys, Antanas
    Jablonskyte, Janina
    MACHINES, 2024, 12 (07)
  • [27] Optimization of Surface Roughness using Taguchi Methodology & Prediction of Tool Wear in Hard Turning Tools
    Sahu, Supriya
    Choudhury, B. B.
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (4-5) : 2615 - 2623
  • [28] OPTIMAL PREDICTION AND DESIGN OF SURFACE ROUGHNESS FOR CNC TURNING OF AL7075-T6 BY USING THE TAGUCHI HYBRID QPSO ALGORITHM
    Chen, Wen-Jong
    Huang, Chuan-Kuei
    Yang, Qi-Zheng
    Yang, Yin-Liang
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2016, 40 (05) : 883 - 895
  • [29] Prediction of Surface Roughness in Longitudinal Turning Process by a Genetic Learning Algorithm
    Aldas, Kemal
    Ozkul, Iskender
    Eskil, Murat
    MATERIALS TESTING, 2014, 56 (05) : 375 - 380
  • [30] A knowledge-based system for the prediction of surface roughness in turning process
    Abburi, NR
    Dixit, US
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2006, 22 (04) : 363 - 372