Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method

被引:54
|
作者
Alajmi, Mahdi S. [1 ]
Almeshal, Abdullah M. [2 ]
机构
[1] Publ Author Appl Educ & Training, Coll Technol Studies, Dept Mfg Engn Technol, Safat 13092, Kuwait
[2] Publ Author Appl Educ & Training, Coll Technol Studies, Dept Elect Engn Technol, Safat 13092, Kuwait
关键词
adaptive neuro-fuzzy inference system; turning process; surface roughness; machine learning; quantum particle swarm optimization; ANFIS-QPSO; ANN; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; MODEL; ALGORITHM; STEEL; PERFORMANCE; PARAMETERS; TAGUCHI; RSM;
D O I
10.3390/ma13132986
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a prediction method of surface roughness values for dry and cryogenic turning of AISI 304 stainless steel using the ANFIS-QPSO machine learning approach. ANFIS-QPSO combines the strengths of artificial neural networks, fuzzy systems and evolutionary optimization in terms of accuracy, robustness and fast convergence towards global optima. Simulations revealed that ANFIS-QPSO results in accurate prediction of surface roughness with RMSE = 4.86%, MAPE = 4.95% and R-2= 0.984 for the dry turning process. Similarly, for the cryogenic turning process, ANFIS-QPSO resulted in surface roughness predictions with RMSE = 5.08%, MAPE = 5.15% and R-2= 0.988 that are of high agreement with the measured values. Performance comparisons between ANFIS-QPSO, ANFIS, ANFIS-GA and ANFIS-PSO suggest that ANFIS-QPSO is an effective method that can ensure a high prediction accuracy of surface roughness values for dry and cryogenic turning processes.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Prediction of Surface Roughness and Power in Turning Process Using Response Surface Method and ANN
    Aljinovic, Amanda
    Bilic, Bozenko
    Gjeldum, Nikola
    Mladineo, Marko
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2021, 28 (02): : 456 - 464
  • [2] MODELLING SURFACE ROUGHNESS IN WEDM PROCESS USING ANFIS METHOD
    Aldas, K.
    Ozkul, I.
    Akkurt, A.
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2014, 20 (04): : 548 - 558
  • [3] Optimization of Surface Roughness in Turning Process by Using Jaya Algorithm
    Khachane, Ashish
    Jatti, Vijaykumar
    TECHNO-SOCIETAL 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SOCIETAL APPLICATIONS - VOL 2, 2020, : 143 - 147
  • [4] Prediction and Optimization of Surface Roughness and Cutting Forces in Turning Process Using ANN, SHAP Analysis, and Hybrid MCDM Method
    Pasic, Mirza
    Marinkovic, Dejan
    Lukic, Dejan
    Begic-Hajdarevic, Derzija
    Zivkovic, Aleksandar
    Milosevic, Mijodrag
    Muhamedagic, Kenan
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [5] SURFACE ROUGHNESS PREDICTION IN TURNING PROCESS BY APPLYING COMPUTER VISION METHOD
    Taha, Omer Wathiq
    Abdulateef, Osamah Fadhil
    IIUM ENGINEERING JOURNAL, 2021, 22 (02): : 249 - 260
  • [6] Prediction of Surface Roughness and Optimization of Process Parameters for Slow Tool Servo Turning
    Guo, Hangyan
    Kang, Min
    Zhou, Wei
    MANUFACTURING TECHNOLOGY, 2021, 21 (05): : 616 - 626
  • [7] Prediction and optimization of surface roughness in thermal drilling using integrated ANFIS and GA approach
    Kumar, R.
    Hynes, N. Rajesh Jesudoss
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (01): : 30 - 41
  • [8] A surface roughness prediction model for hard turning process
    Singh, Dilbag
    Rao, P. Venkateswara
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 32 (11-12): : 1115 - 1124
  • [9] A surface roughness prediction model for hard turning process
    Dilbag Singh
    P. Venkateswara Rao
    The International Journal of Advanced Manufacturing Technology, 2007, 32 : 1115 - 1124
  • [10] In-process surface roughness prediction system using cutting vibrations in turning
    Salgado, D. R.
    Alonso, F. J.
    Cambero, I.
    Marcelo, A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 43 (1-2): : 40 - 51