Effects of dissipative disorder on front formation in pattern forming systems

被引:3
|
作者
Peleg, A [1 ]
Dohnal, T
Chung, Y
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] LANL, Theoret Div, Los Alamos, NM 87545 USA
[3] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevE.72.027203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effects of weak disorder in the linear gain coefficient on front formation in pattern forming systems described by the cubic-quintic nonlinear Schrodinger equation. We calculate the statistics of the front amplitude and position. We show that the distribution of the front amplitude has a loglognormal diverging form at the maximum possible amplitude and that the distribution of the front position has a lognormal tail. The theory is in good agreement with our numerical simulations. We show that these results are valid for other types of dissipative disorder and relate the loglognormal divergence of the amplitude distribution to the form of the emerging front tail.
引用
收藏
页数:4
相关论文
共 50 条