A note on Gorenstein projective complexes

被引:2
|
作者
Lu, Bo [1 ]
Liu, Zhongkui [2 ]
机构
[1] Northwest Univ Nationalities, Coll Math & Comp Sci, Lanzhou, Gansu, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Gorenstein projective module; Cartan-Eilenberg projective complex; Gorenstein projective complex; A complex; CARTAN-EILENBERG COMPLEXES; MODULES;
D O I
10.3906/mat-1504-25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As we know, a complex Q is projective if and only if Q is exact and Z(n)(Q) is projective in R-Mod for each n is an element of Z. In this article, we show that a complex G is Gorenstein projective with Hom(R) (P, G) and Hom(R) (G,P) exact for any Cartan-Eilenberg projective complex P if and only if G is exact and Z(n)(G) is Gorenstein projective in R-Mod for each n is an element of Z. Using the above result, a new equivalent characterization of some A complexes is obtained.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 50 条
  • [31] Gorenstein Projective Precovers
    Estrada, Sergio
    Iacob, Alina
    Yeomans, Katelyn
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [32] Gorenstein Projective Precovers
    Sergio Estrada
    Alina Iacob
    Katelyn Yeomans
    Mediterranean Journal of Mathematics, 2017, 14
  • [33] Gorenstein Projective Resolvents
    Enochs, Edgar
    Estrada, Sergio
    Iacob, Alina
    Odabasi, Sinem
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (09) : 3989 - 4000
  • [34] Gorenstein projective and weak Gorenstein flat modules
    Dong, Jun
    Wei, Jie
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) : 983 - 993
  • [35] Gorenstein-projective and semi-Gorenstein-projective modules. II
    Ringel, Claus Michael
    Zhang, Pu
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [36] Complete cohomology for complexes with finite Gorenstein AC-projective dimension
    Jiangsheng Hu
    Yuxian Geng
    Qinghua Jiang
    Frontiers of Mathematics in China, 2016, 11 : 901 - 920
  • [37] Complete cohomology for complexes with finite Gorenstein AC-projective dimension
    Hu, Jiangsheng
    Geng, Yuxian
    Jiang, Qinghua
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (04) : 901 - 920
  • [38] Ω-Gorenstein projective and flat covers and Ω-Gorenstein injective envelopes
    Enochs, EE
    Jenda, OMG
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) : 1453 - 1470
  • [39] Gorenstein ℚ-homology projective planes
    DongSeon Hwang
    JongHae Keum
    Hisanori Ohashi
    Science China Mathematics, 2015, 58 : 501 - 512
  • [40] Level and Gorenstein projective dimension
    Awadalla, Laila
    Marley, Thomas
    JOURNAL OF ALGEBRA, 2022, 609 : 606 - 618