The basis of magnetized target fusion - A fusion primer

被引:0
|
作者
Lindemuth, Irvin R. [1 ]
Siemon, Richard E. [1 ]
机构
[1] Univ Nevada, Reno, NV 89557 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A growing number of researchers worldwide are recognizing that the technology of the Megagauss Conferences has opened the possibility of achieving controlled thermonuclear fusion in a relatively unexplored fusion fuel density regime. Magnetized Target Fusion (MTF) operates at a density intermediate between the fuel density of the two conventional fusion approaches, magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). In this paper, we review the fuel conditions (e.g., confinement time, density, temperature) that must be met to achieve significant fusion energy release. We show that the constraint of steady-state operation forces MCF to operate at the low end of the density spectrum and that the constraint of unmagnetized fuel forces ICF to operate at the high end. Our analysis shows that operation at an intermediate density (10(18)-10(22)/cm(3)) has many attractive features and potentially overcomes some of the obstacles, particularly cost, faced by the more conventional approaches.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [31] Ignition conditions for magnetized target fusion in cylindrical geometry
    Basko, MM
    Kemp, AJ
    Meyer-ter-Vehn, J
    NUCLEAR FUSION, 2000, 40 (01) : 59 - 68
  • [32] MHD-neutronics modeling for magnetized target fusion
    Chaturvedi, Shashank
    MEGAGAUSS MAGNETIC FIELDS AND HIGH ENERGY LINER TECHNOLOGY, 2007, : 83 - 91
  • [33] Formation Process of Magnetized Fusion Target on the YingGuang 1 Device
    李璐璐
    贾月松
    孙奇志
    刘伟
    刘正芬
    秦卫东
    李军
    池原
    杨显俊
    Chinese Physics Letters, 2016, 33 (04) : 84 - 87
  • [34] Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration
    T. P. Intrator
    G. A. Wurden
    P. E. Sieck
    W. J. Waganaar
    L. Dorf
    M. Kostora
    R. J. Cortez
    J. H. Degnan
    E. L. Ruden
    M. Domonkos
    P. Adamson
    C. Grabowski
    D. G. Gale
    M. Kostora
    W. Sommars
    M. Frese
    S. Frese
    J. F. Camacho
    P. Parks
    R. E. Siemon
    T. Awe
    A. G. Lynn
    R. Gribble
    Journal of Fusion Energy, 2009, 28 : 165 - 169
  • [35] Effects of Sputtering of and Radiation by Aluminum on Magnetized Target Fusion Plasmas
    Peter H. Stoltz
    Brian Granger
    Ammar Hakim
    Scott W. Sides
    Seth A. Veitzer
    Journal of Fusion Energy, 2008, 27 : 119 - 122
  • [36] Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration
    Intrator, T. P.
    Wurden, G. A.
    Sieck, P. E.
    Waganaar, W. J.
    Dorf, L.
    Kostora, M.
    Cortez, R. J.
    Degnan, J. H.
    Ruden, E. L.
    Domonkos, M.
    Adamson, P.
    Grabowski, C.
    Gale, D. G.
    Kostora, M.
    Sommars, W.
    Frese, M.
    Frese, S.
    Camacho, J. F.
    Parks, P.
    Siemon, R. E.
    Awe, T.
    Lynn, A. G.
    Gribble, R.
    JOURNAL OF FUSION ENERGY, 2009, 28 (02) : 165 - 169
  • [37] On the efficacy of imploding plasma liners for magnetized fusion target compression
    Parks, P. B.
    PHYSICS OF PLASMAS, 2008, 15 (06)
  • [38] Isentropic focusing of supersonic plasma jets for magnetized target fusion
    Winterberg, F
    PHYSICS OF PLASMAS, 2002, 9 (08) : 3540 - 3544
  • [39] Effects of sputtering of and radiation by aluminum on magnetized target fusion plasmas
    不详
    JOURNAL OF FUSION ENERGY, 2008, 27 (1-2) : 119 - 122
  • [40] An extended study of the ignition design space of magnetized target fusion
    Lindemuth, Irvin R.
    PHYSICS OF PLASMAS, 2017, 24 (05)