Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems

被引:33
|
作者
Frampton, John P. [2 ]
Lai, David [2 ]
Sriram, Hari [2 ]
Takayama, Shuichi [1 ]
机构
[1] Univ Michigan, Dept Biomed Engn & Macromol Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
关键词
Microfluidic; Laminar; Droplet; Aqueous two-phase; Dextran; Polyethylene glycol; FLOW; MICROFLUIDICS; ENVIRONMENTS; EXTRACTION; MIGRATION; CHANNELS; CULTURE; ASSAY;
D O I
10.1007/s10544-011-9574-y
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Laminar and pulsatile flow of aqueous solutions in microfluidic channels can be useful for controlled delivery of cells and molecules. Dispersion effects resulting from diffusion and convective disturbances, however, result in reagent delivery profiles becoming blurred over the length of the channels. This issue is addressed partially by using oil-in-water phase systems. However, there are limitations in terms of the biocompatibility of these systems for adherent cell culture. Here we present a fully biocompatible aqueous two-phase flow system that can be used to pattern cells within simple microfluidic channel designs, as well as to deliver biochemical treatments to cells according to discrete boundaries. We demonstrate that aqueous two-phase systems are capable of precisely delivering cells as laminar patterns, or as islands by way of forced droplet formation. We also demonstrate that these systems can be used to precisely control chemical delivery to preformed monolayers of cells growing within channels. Treatments containing trypsin were localized more reliably using aqueous two-phase delivery than using conventional delivery in aqueous medium.
引用
收藏
页码:1043 / 1051
页数:9
相关论文
共 50 条
  • [31] AFFINITY PARTITIONING: DEVELOPMENT OF MATHEMATICAL MODEL DESCRIBING BEHAVIOR OF BIOMOLECULES IN AQUEOUS TWO-PHASE SYSTEMS.
    Cordes, A.
    Flossdorf, J.
    Kula, M.-R.
    1600, (30):
  • [32] Prediction of the Partition Coefficients of Biomolecules in Polymer-Polymer Aqueous Two-Phase Systems Using the Artificial Neural Network Model
    Pazuki, G. R.
    Taghikhani, V.
    Vossoughi, M.
    PARTICULATE SCIENCE AND TECHNOLOGY, 2010, 28 (01) : 67 - 73
  • [33] Enrichment and recovery of mammalian cells from contaminated cultures using aqueous two-phase systems
    Luby, Christopher
    Coughlin, Benjamin
    Mace, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [34] Extraction of the antimicrobial peptide cerein 8A by aqueous two-phase systems and aqueous two-phase micellar systems
    Lappe, R.
    Sant'Anna, V.
    Brandelli, A.
    NATURAL PRODUCT RESEARCH, 2012, 26 (23) : 2259 - 2265
  • [35] Enrichment and Recovery of Mammalian Cells from Contaminated Cultures Using Aqueous Two-Phase Systems
    Luby, Christopher J.
    Coughlin, Benjamin P.
    Mace, Charles R.
    ANALYTICAL CHEMISTRY, 2018, 90 (03) : 2103 - 2110
  • [37] Theory of phase formation in aqueous two-phase systems
    Cabezas, H
    JOURNAL OF CHROMATOGRAPHY B-BIOMEDICAL APPLICATIONS, 1996, 680 (1-2): : 3 - 30
  • [38] Experiments on phase inversion in aqueous two-phase systems
    Merchuk, JC
    INTERNATIONAL SYMPOSIUM ON LIQUID-LIQUID TWO PHASE FLOW AND TRANSPORT PHENOMENA, 1998, : 393 - 400
  • [39] Mechanism of Phase Separation in Aqueous Two-Phase Systems
    Titus, Amber R.
    Madeira, Pedro P.
    Ferreira, Luisa A.
    Chernyak, Vladimir Y.
    Uversky, Vladimir N.
    Zaslavsky, Boris Y.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [40] On the kinetics of phase separation in aqueous two-phase systems
    Salamanca, MH
    Merchuk, JC
    Andrews, BA
    Asenjo, JA
    JOURNAL OF CHROMATOGRAPHY B, 1998, 711 (1-2): : 319 - 329