Computational study of low-cycle fatigue behaviour of lotus-type porous material

被引:8
|
作者
Kramberger, J. [1 ]
Sraml, M. [2 ]
Glodez, S. [1 ]
机构
[1] Univ Maribor, Fac Mech Engn, Smetanova 17, SI-2000 Maribor, Slovenia
[2] Univ Maribor, Fac Civil Engn, Smetanova 17, SLO-2000 Maribor, Slovenia
关键词
Lotus-type porous material; Low-cycle fatigue; Damage; Finite element analysis; APM FOAM ELEMENTS; COMPRESSIVE PROPERTIES; PORE MORPHOLOGY; MICROSTRUCTURE; PROPAGATION; INITIATION; METALS; COPPER; DAMAGE; IRON;
D O I
10.1016/j.ijfatigue.2016.02.037
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A computational study of low-cycle fatigue behaviour of lotus-type porous material subjected to uniaxial/biaxial tension and compressive loading cycles is presented in this paper. The considered computational models have different pore topology patterns. The low-cycle fatigue analysis is performed using a damage initiation and evolution law, based on the inelastic hysteresis energy for stabilized loading cycle. The direct cyclic analysis is used to obtain the stabilized response of a model subjected to periodic loading. The present study clarifies the influences of pore topology on the low-cycle fatigue behaviour under different type of transversal loading conditions with respect to the pore orientations. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:623 / 632
页数:10
相关论文
共 50 条
  • [31] Strengthening of lotus-type porous copper by ECAE process
    Lobos, J.
    Suzuki, S.
    Utsunomiya, H.
    Nakajima, H.
    Rodrigez-Perez, M. A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (10) : 2007 - 2011
  • [32] Surface modification of lotus-type porous copper by aluminization
    Cui, Chuanyu
    Du, Hao
    Wang, Jiqiang
    Yang, Yin
    Xiong, Tianying
    SN APPLIED SCIENCES, 2019, 1 (01):
  • [33] Fabrication of lotus-type porous metals and their physical properties
    Nakajima, H
    Ikeda, T
    Hyun, SK
    ADVANCED ENGINEERING MATERIALS, 2004, 6 (06) : 377 - 384
  • [34] Compressive properties of lotus-type porous stainless steel
    T. Ide
    M. Tane
    T. Ikeda
    S. K. Hyun
    H. Nakajima
    Journal of Materials Research, 2006, 21 : 185 - 193
  • [35] Anisotropic electrical conductivity of lotus-type porous nickel
    Tane, M
    Hyun, SK
    Nakajima, H
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [36] Anisotropic Mechanical Properties of Lotus-Type Porous Metals
    Nakajima, H.
    Tane, M.
    Hyun, S. K.
    Seki, H.
    IUTAM SYMPOSIUM ON MECHANICAL PROPERTIES OF CELLULAR MATERIALS, 2009, 12 : 43 - 50
  • [37] Spatial distribution of pores in lotus-type porous metal
    Jiang Wan
    Yanxiang Li
    Yuan Liu
    Journal of Materials Science, 2007, 42 : 6446 - 6452
  • [38] Compressive properties of lotus-type porous stainless steel
    Ide, T
    Tane, M
    Ikeda, T
    Hyun, SK
    Nakajima, H
    JOURNAL OF MATERIALS RESEARCH, 2006, 21 (01) : 185 - 193
  • [39] Anisotropic Tensile Deformation of Lotus-type Porous Copper
    Tane, Masakazu
    Okamoto, Rika
    Nakajima, Hideo
    ECO-MATERIALS PROCESSING AND DESIGN XII, 2011, 695 : 545 - 548
  • [40] STUDY OF LOW-CYCLE FATIGUE IN A STEEL TYPE 316-L
    BRUN, G
    GAUTHIER, JP
    PETREQUIN, P
    MEMOIRES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1976, 73 (7-8): : 461 - 483