Effect of the three-dimensional organization of liver cells on the biogenesis of the γ-glutamyltransferase fraction pattern

被引:3
|
作者
Corti, Alessandro [1 ]
Fierabracci, Vanna [1 ]
Caponi, Laura [1 ]
Paolicchi, Aldo [1 ]
Lorenzini, Evelina [1 ]
Campani, Daniela [2 ]
Belcastro, Eugenia [1 ]
Franzini, Maria [1 ,3 ]
机构
[1] Univ Pisa, Dept Translat Res & New Technol Med & Surg, Pisa, Italy
[2] Univ Pisa, Dept Surg Med Mol Pathol & Emergency Med, Pisa, Italy
[3] Fdn G Monasterio, CNR Reg Toscana, Pisa, Italy
关键词
Bile acids; gel-filtration chromatography; HepG2; cells; liver parenchyma; spheroids; COLON-CARCINOMA CELLS; NORMAL HUMAN TISSUE; CARDIOVASCULAR-DISEASE; METABOLIC SYNDROME; HEPG2; SPHEROIDS; B-GGT; TRANSPEPTIDASE; RISK; HEART; SERUM;
D O I
10.3109/1354750X.2016.1153719
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Context Four gamma-glutamyltransferase (GGT) fractions with different molecular weights (big-, medium-, small-and free-GGT) are detectable in human plasma. Objective Verify if liver cells can release all four GGT fractions and if the spatial cell organization influences their release. Methods Hepatoma (HepG2) and melanoma (Me665/2/60) cells were cultured as monolayers or spheroids. GGT released in culture media was analysed by gel-filtration chromatography. Results HepG2 and Me665/2/60 monolayers released the b-GGT fraction, while significative levels of s-GGT and f-GGT were detectable only in media of HepG2-spheroids. Bile acids alone or in combination with papain promoted the conversion of b-GGT in s-GGT or f-GGT, respectively. Conclusions GGT is usually released as b-GGT, while s-GGT and f-GGT are likely to be produced in the liver extracellular environment by the combined action of bile acids and proteases.
引用
下载
收藏
页码:441 / 448
页数:8
相关论文
共 50 条
  • [21] Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds
    Sun, T
    Mai, SM
    Norton, D
    Haycock, JW
    Ryan, AJ
    MacNeil, S
    TISSUE ENGINEERING, 2005, 11 (7-8): : 1023 - 1033
  • [22] Three-Dimensional Organization of Self-Encapsulating Gluconobacter oxydans Bacterial Cells
    Vi Khanh Truong
    Bhadra, Chris M.
    Christofferson, Andrew J.
    Yarovsky, Irene
    Al Kobaisi, Mohammad
    Garvey, Christopher J.
    Ponamoreva, Olga N.
    Alferov, Sergey V.
    Alferov, Valery A.
    Perera, Palalle G. Tharushi
    Nguyen, Duy H. K.
    Buividas, Ricardas
    Juodkazis, Saulius
    Crawford, Russell J.
    Ivanova, Elena P.
    ACS OMEGA, 2017, 2 (11): : 8099 - 8107
  • [23] THREE-DIMENSIONAL ORGANIZATION OF I2L MEMORY CELLS.
    Anon
    IBM technical disclosure bulletin, 1986, 28 (08): : 3360 - 3361
  • [24] Three-dimensional chromosome organization in flowering plants
    Grob, Stefan
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (02) : 83 - 91
  • [25] Three-dimensional nuclear organization in Arabidopsis thaliana
    Pontvianne, Frederic
    Grob, Stefan
    JOURNAL OF PLANT RESEARCH, 2020, 133 (04) : 479 - 488
  • [26] Three-Dimensional Organization of Polyribosomes–A Modern Approach
    Z. A. Afonina
    V. A. Shirokov
    Biochemistry (Moscow), 2018, 83 : S48 - S55
  • [27] Three-dimensional organization of a human water channel
    Anchi Cheng
    A. N. van Hoek
    M. Yeager
    A. S. Verkman
    A. K. Mitra
    Nature, 1997, 387 : 627 - 630
  • [28] The complex three-dimensional organization of epithelial tissues
    Gomez-Galvez, Pedro
    Vicente-Munuera, Pablo
    Anbari, Samira
    Buceta, Javier
    Escudero, Luis M.
    DEVELOPMENT, 2021, 148 (01):
  • [29] Three-dimensional organization of electrical turbulence in the heart
    Panfilov, AV
    PHYSICAL REVIEW E, 1999, 59 (06) : R6251 - R6254
  • [30] Three-dimensional organization of the developing vasculature of the kidney
    Kloth, S
    Ebenbeck, C
    Monzer, J
    deVries, U
    Minuth, WW
    CELL AND TISSUE RESEARCH, 1997, 287 (01) : 193 - 201