Binary MDS Array Codes With Optimal Repair

被引:22
|
作者
Hou, Hanxu [1 ,2 ]
Lee, Patrick P. C. [2 ]
机构
[1] Dongguan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523808, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Maintenance engineering; Bandwidth; Encoding; Decoding; Redundancy; Binary MDS array codes; EVENODD codes; repair bandwidth; repair access; SINGLE DISK FAILURE; DISTRIBUTED STORAGE; CODING SCHEME; X-CODE; CONSTRUCTION; RECOVERY; EVENODD; RAID; STAR;
D O I
10.1109/TIT.2019.2939111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider a binary maximum distance separable (MDS) array code composed of an $m\times (k+r)$ array of bits with $k$ information columns and $r$ parity columns, such that any $k$ out of $k+r$ columns suffice to reconstruct the $k$ information columns. Our goal is to provide optimal repair access for binary MDS array codes, meaning that the bandwidth triggered to repair any single failed information or parity column is minimized. In this paper, we propose a generic transformation framework for binary MDS array codes, using EVENODD codes as a motivating example, to support optimal repair access for $k+1\le d \le k+r-1$ , where $d$ denotes the number of non-failed columns that are connected for repair; note that when $d< k+r-1$ , some of the chosen $d$ columns in repairing a failed column are specific. In addition, we show how our transformation framework applies to an example of binary MDS array codes with asymptotically optimal repair access of any single information column and enables asymptotically or exactly optimal repair access for any column. Furthermore, we present a new transformation for EVENODD codes with two parity columns such that the existing efficient repair property of any information column is preserved and the repair access of parity column is optimal.
引用
收藏
页码:1405 / 1422
页数:18
相关论文
共 50 条
  • [21] Improved Schemes for Asymptotically Optimal Repair of MDS Codes
    Chowdhury, Ameera
    Vardy, Alexander
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 950 - 957
  • [22] Improved Schemes for Asymptotically Optimal Repair of MDS Codes
    Chowdhury, Ameera
    Vardy, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5051 - 5068
  • [23] Families of Optimal Binary Non-MDS Erasure Codes
    Gligoroski, Danilo
    Kralevska, Katina
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 3150 - 3154
  • [24] X-code: MDS array codes with optimal encoding
    Xu, LH
    Bruck, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (01) : 272 - 276
  • [25] Polynomial Length MDS Codes With Optimal Repair in Distributed Storage
    Cadambe, Viveck R.
    Huang, Cheng
    Li, Jin
    Mehrotra, Sanjeev
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1850 - 1854
  • [26] Comparison on Binary MDS Array Codes for Single Disk Failure Recovery
    Ze, Junrong
    Hou, Hanxu
    Han, Yunghsiang S.
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 536 - 541
  • [27] S-Code: New MDS array codes with optimal encoding
    Katti, R
    Ruan, XY
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 1105 - 1108
  • [28] A Generic Transformation to Generate MDS Array Codes With δ-Optimal Access Property
    Liu, Yi
    Li, Jie
    Tang, Xiaohu
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 759 - 768
  • [29] Irregular MDS Array Codes
    Tosato, Filippo
    Sandell, Magnus
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (09) : 5304 - 5314
  • [30] Cooperative Repair: Constructions of Optimal MDS Codes for All Admissible Parameters
    Ye, Min
    Barg, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1639 - 1656