Spectral analysis of boundary layers in Rayleigh-Benard convection

被引:14
|
作者
Verdoold, Jos
Van Reeuwijk, Maarten [2 ]
Tummers, Mark J. [1 ]
Jonker, Harm J. J. [1 ]
Hanjalic, Kemo [1 ,3 ]
机构
[1] Delft Univ Technol, Dept Multi Scale Phys, NL-2628 CJ Delft, Netherlands
[2] Imperial Coll London, Dept Civil & Environm Engn, London SW7 2AZ, England
[3] Univ Roma La Sapienza, Dept Mech & Aeronaut, I-00184 Rome, Italy
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 01期
关键词
D O I
10.1103/PhysRevE.77.016303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A combined experimental and numerical study of the boundary layer in a 4:1 aspect-ratio Rayleigh-Benard cell over a four-decade range of Rayleigh numbers has been undertaken aimed at gaining a better insight into the character of the boundary layers. The experiments involved the simultaneous laser Doppler anemometry measurements of fluid velocity at two locations, i.e., in the boundary layer and far away from it in the bulk, for Rayleigh numbers varying between 1.6x10(7) and 2.4x10(9). In parallel, direct numerical simulations have been performed for the same configuration for Rayleigh numbers between 7.0x10(4) and 7.7x10(7). The temperature and velocity probability density functions and the power spectra of the horizontal velocity fluctuations measured in the boundary layer and in the bulk flow are found to be practically identical. Except for the smallest Rayleigh numbers, the spectra in the boundary layer and in the bulk central region are continuous and have a wide range of active scales. This indicates that both the bulk and the boundary layers are turbulent in the Ra number range considered. However, molecular effects can still be observed and the boundary layer does not behave like a classical shear-driven turbulent boundary layer.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The evolution of the boundary layer in turbulent Rayleigh-Benard convection in air
    du Puits, R.
    Willert, C.
    PHYSICS OF FLUIDS, 2016, 28 (04)
  • [42] Thermal Boundary Layer Equation for Turbulent Rayleigh-Benard Convection
    Shishkina, Olga
    Horn, Susanne
    Wagner, Sebastian
    Ching, Emily S. C.
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [43] Boundary Zonal Flow in Rotating Turbulent Rayleigh-Benard Convection
    Zhang, Xuan
    van Gils, Dennis P. M.
    Horn, Susanne
    Wedi, Marcel
    Zwirner, Lukas
    Ahlers, Guenter
    Ecke, Robert E.
    Weiss, Stephan
    Bodenschatz, Eberhard
    Shishkina, Olga
    PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [44] Regime crossover in Rayleigh-Benard convection with mixed boundary conditions
    Ostilla-Monico, Rodolfo
    Amritkar, Amit
    JOURNAL OF FLUID MECHANICS, 2020, 903 (903)
  • [45] CRITICAL RAYLEIGH NUMBER IN RAYLEIGH-BENARD CONVECTION
    Guo, Yan
    Han, Yongqian
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 149 - 160
  • [46] Local boundary layer scales in turbulent Rayleigh-Benard convection
    Scheel, Janet D.
    Schumacher, Joerg
    JOURNAL OF FLUID MECHANICS, 2014, 758 : 344 - 373
  • [47] Thermal boundary layers in turbulent Rayleigh-Benard convection at aspect ratios between 1 and 9
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [48] Linear stability analysis of magnetic Rayleigh-Benard convection
    Morimoto, H
    Maekawa, T
    Ishikawa, M
    GRAVITATIONAL EFFECTS IN FLUID AND MATERIALS SCIENCE, 1998, 22 (08): : 1271 - 1274
  • [49] Linear stability analysis of cylindrical Rayleigh-Benard convection
    Wang, Bo-Fu
    Ma, Dong-Jun
    Chen, Cheng
    Sun, De-Jun
    JOURNAL OF FLUID MECHANICS, 2012, 711 : 27 - 39
  • [50] Stability analysis of Rayleigh-Benard convection in a porous medium
    Rajagopal, K. R.
    Saccomandi, G.
    Vergori, L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01): : 149 - 160