Nonmonotone slip problem for miscible liquids

被引:2
|
作者
Migorski, Stanislaw [1 ,2 ]
Szafraniec, Pawel [2 ,3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Agr Univ Krakow, Fac Prod & Power Engn, Ul Balicka 116B, PL-30149 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Navier-Stokes equation; Generalized subgradient; Nonconvex potential; Operator inclusion; Weak solution; FRICTION; MODEL;
D O I
10.1016/j.jmaa.2018.10.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of a solution to the nonstationary two dimensional system of equations describing miscible liquids with nonsmooth, multivalued and nonmonotone boundary conditions of subdifferential type. We employ the regularized Galerkin method combined with results from the theory of hemivariational inequalities. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:342 / 357
页数:16
相关论文
共 50 条