Nonmonotone slip problem for miscible liquids

被引:2
|
作者
Migorski, Stanislaw [1 ,2 ]
Szafraniec, Pawel [2 ,3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Agr Univ Krakow, Fac Prod & Power Engn, Ul Balicka 116B, PL-30149 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Navier-Stokes equation; Generalized subgradient; Nonconvex potential; Operator inclusion; Weak solution; FRICTION; MODEL;
D O I
10.1016/j.jmaa.2018.10.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of a solution to the nonstationary two dimensional system of equations describing miscible liquids with nonsmooth, multivalued and nonmonotone boundary conditions of subdifferential type. We employ the regularized Galerkin method combined with results from the theory of hemivariational inequalities. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:342 / 357
页数:16
相关论文
共 50 条
  • [1] A Contact Problem with Normal Compliance, Finite Penetration and Nonmonotone Slip Dependent Friction
    Ramadan, Ahmad
    Barboteu, Mikaeel
    Bartosz, Krzysztof
    Kalita, Piotr
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 295 - 303
  • [2] ANALYSIS OF A CONTACT PROBLEM WITH NORMAL COMPLIANCE, FINITE PENETRATION AND NONMONOTONE SLIP DEPENDENT FRICTION
    Barboteu, Mikaeel
    Bartosz, Krzysztof
    Kalita, Piotr
    Ramadan, Ahmad
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (01)
  • [3] HOMOGENIZATION OF MISCIBLE LIQUIDS
    VONCKEN, RM
    BRITISH CHEMICAL ENGINEERING, 1965, 10 (01): : 12 - &
  • [4] Spreading of miscible liquids
    Walls, Daniel J.
    Haward, Simon J.
    Shen, Amy Q.
    Fuller, Gerald G.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (01):
  • [5] A VARIATIONAL-HEMIVARIATIONAL INEQUALITY IN CONTACT PROBLEM FOR LOCKING MATERIALS AND NONMONOTONE SLIP DEPENDENT FRICTION
    Stanislaw MIGORSKI
    Justyna OGORZALY
    Acta Mathematica Scientia(English Series), 2017, 37 (06) : 1639 - 1652
  • [6] A VARIATIONAL-HEMIVARIATIONAL INEQUALITY IN CONTACT PROBLEM FOR LOCKING MATERIALS AND NONMONOTONE SLIP DEPENDENT FRICTION
    Migorski, Stanislaw
    Ogorzaly, Justyna
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (06) : 1639 - 1652
  • [7] Equilibria in partially miscible liquids
    Antonoff, G
    Chanin, M
    Hecht, M
    JOURNAL OF PHYSICAL CHEMISTRY, 1942, 46 (04): : 492 - 496
  • [8] HOMOGENIZATION OF MISCIBLE LIQUIDS .2
    VONCKEN, RM
    BRITISH CHEMICAL ENGINEERING, 1965, 10 (03): : 179 - &
  • [9] On the spreading of partially miscible liquids
    Santiago-Rosanne, M
    Vignes-Adler, M
    Velarde, MG
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 234 (02) : 375 - 383
  • [10] Visual simulation of miscible liquids
    Bao, Kai
    Wu, Enhua
    Wu, Xiaolong
    Zhang, Hui
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2010, 22 (10): : 1721 - 1727