On the Yang-Baxter Poisson algebra in non-ultralocal integrable systems

被引:11
|
作者
Bazhanov, Vladimir V. [1 ]
Kotousov, Gleb A. [1 ,2 ]
Lukyanov, Sergei L. [2 ,3 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Theoret Phys, Canberra, ACT 2601, Australia
[2] Rutgers State Univ, Dept Phys & Astron, NHETC, Piscataway, NJ 08855 USA
[3] Kharkevich Inst Informat Transmiss Problems, Moscow 127994, Russia
关键词
MODELS; DEFORMATIONS;
D O I
10.1016/j.nuclphysb.2018.07.016
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A common approach to the quantization of integrable models starts with the formal substitution of the Yang-Baxter Poisson algebra with its quantum version. However it is difficult to discern the presence of such an algebra for the so-called non-ultralocal models. The latter includes the class of non-linear sigma models which are most interesting from the point of view of applications. In this work, we investigate the emergence of the Yang-Baxter Poisson algebra in a non-ultralocal system which is related to integrable deformations of the Principal Chiral Field. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:529 / 556
页数:28
相关论文
共 50 条
  • [11] Spectral-parameter dependent Yang-Baxter operators and Yang-Baxter systems from algebra structures
    Nichita, Florin F.
    Parashar, Deepak
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (08) : 2713 - 2726
  • [12] ALGEBRA STRUCTURES ARISING FROM YANG-BAXTER SYSTEMS
    Berceanu, Barbu R.
    Nichita, Florin F.
    Popescu, Calin
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) : 4442 - 4452
  • [13] Yang-Baxter Systems, Algebra Factorizations and Braided Categories
    Nichita, Florin F.
    AXIOMS, 2013, 2 (03): : 437 - 442
  • [14] Yang-Baxter integrable Lindblad equations
    Ziolkowska, Aleksandra A.
    Essler, Fabian H. L.
    SCIPOST PHYSICS, 2020, 8 (03):
  • [15] Yang-Baxter maps and integrable dynamics
    Veselov, AP
    PHYSICS LETTERS A, 2003, 314 (03) : 214 - 221
  • [16] Yang-Baxter integrable dimers on a strip
    Pearce, Paul A.
    Rasmussen, Jorgen
    Vittorini-Orgeas, Alessandra
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (01):
  • [17] Integrable systems generated by a constant solution of the Yang-Baxter equation
    Golubchik, IZ
    Sokolov, VV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (04) : 275 - 277
  • [18] Yang-Baxter algebra and MacMahon representation
    Wang, Na
    Wu, Ke
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
  • [19] Discrete Integrable Systems, Darboux Transformations, and Yang-Baxter Maps
    Bilman, Deniz
    Konstantinou-Rizos, Sotiris
    SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, : 195 - 260
  • [20] Poisson algebras and Yang-Baxter equations
    Schedler, Travis
    ADVANCES IN QUANTUM COMPUTATION, 2009, 482 : 91 - 106