Boussinesq equation solver and its 3D visualization

被引:0
|
作者
Li, Yuanya [1 ]
机构
[1] Nanjing Hydraul Res Inst, Nanjing 210024, Peoples R China
关键词
D O I
暂无
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
引用
收藏
页码:403 / 406
页数:4
相关论文
共 50 条
  • [31] A parallel direct 3D elliptic solver
    Qaddouri, A
    Côté, J
    Valin, M
    HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, 2000, 541 : 429 - 442
  • [32] Cadence Clarity 3D Transient Solver
    Liu, Yongjun
    Liu, Jian
    2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [33] Parallel performance of a 3D elliptic solver
    Lirkov, I
    Margenov, S
    Paprzycki, M
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 535 - 543
  • [34] A multigrid solver for 3D electromagnetic diffusion
    Mulder, W. A.
    GEOPHYSICAL PROSPECTING, 2006, 54 (05) : 633 - 649
  • [35] Parallel performance of a 3D elliptic solver
    Lirkov, I
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 383 - 390
  • [36] 3D extension of the SUNRED field solver
    Páhi, A
    Székely, V
    Rosenthal, M
    Rencz, M
    THERMINIC: COLLECTION OF PAPERS PRESENTED AT THE INTERNATIONAL WORKSOP ON THERMAL INVESTIGATIONS OF ICS AND MICROSTRUCTURES, 1998, : 185 - 190
  • [37] FDwave3D: a MATLAB solver for the 3D anisotropic wave equation using the finite-difference method
    Lei Li
    Jingqiang Tan
    Dazhou Zhang
    Ajay Malkoti
    Ivan Abakumov
    Yujiang Xie
    Computational Geosciences, 2021, 25 : 1565 - 1578
  • [38] FDwave3D: a MATLAB solver for the 3D anisotropic wave equation using the finite-difference method
    Li, Lei
    Tan, Jingqiang
    Zhang, Dazhou
    Malkoti, Ajay
    Abakumov, Ivan
    Xie, Yujiang
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (05) : 1565 - 1578
  • [39] 3D Visualization of Reservoir and its Applications in Fisheries: A GIS Perspective
    Nair, V. Radhakrishnan
    Pravin, P.
    Gopal, Nikita
    Rao, N. H.
    FISHERY TECHNOLOGY, 2016, 53 (01): : 75 - 81
  • [40] Uniqueness and regularity for the 3D Boussinesq system with damping
    Kim Y.-H.
    Li K.-O.
    Kim C.-U.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2021, 67 (1) : 149 - 173