Closure Under Reversal of Languages over Infinite Alphabets

被引:1
|
作者
Genkin, Daniel [1 ]
Kaminski, Michael [2 ]
Peterfreund, Liat [2 ]
机构
[1] Univ Penn, Dept Comp & Informat Sci, 3330 Walnut St, Philadelphia, PA 19104 USA
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
Infinite alphabets; Weak pebble automata; Closure properties; Reversal; FINITE-MEMORY AUTOMATA;
D O I
10.1007/978-3-319-90530-3_13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is shown that languages definable by weak pebble automata are not closed under reversal. For the proof, we establish a kind of periodicity of an automaton's computation over a specific set of words. The periodicity is partly due to the finiteness of the automaton description and partly due to the word's structure. Using such a periodicity we can find a word such that during the automaton's run on it there are two different, yet indistinguishable, configurations. This enables us to remove a part of that word without affecting acceptance. Choosing an appropriate language leads us to the desired result.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [31] TWO-SIDED SHIFT SPACES OVER INFINITE ALPHABETS
    Goncalves, Daniel
    Sobottka, Marcelo
    Starling, Charles
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (03) : 357 - 386
  • [32] A Note on Two-pebble Automata Over Infinite Alphabets
    Kaminski, Michael
    Tan, Tony
    FUNDAMENTA INFORMATICAE, 2010, 98 (04) : 379 - 390
  • [33] ALPHABETS AND LANGUAGES - INTRODUCTION
    SIBLEY, EH
    COMMUNICATIONS OF THE ACM, 1990, 33 (05) : 488 - 490
  • [34] CLOSURE OF AFL UNDER REVERSAL
    GINSBURG, S
    HARRISON, M
    INFORMATION AND CONTROL, 1970, 17 (04): : 395 - &
  • [35] On the equivalence problem for E-pattern languages over small alphabets
    Reidenbach, D
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2004, 3340 : 368 - 380
  • [36] Regular and Context-Free Pattern Languages over Small Alphabets
    Reidenbach, Daniel
    Schmid, Markus L.
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2012), 2012, 7410 : 130 - 141
  • [37] Regular and context-free pattern languages over small alphabets
    Reidenbach, Daniel
    Schmid, Markus L.
    THEORETICAL COMPUTER SCIENCE, 2014, 518 : 80 - 95
  • [38] On the equivalence problem for E-pattern languages over small alphabets
    Reidenbach, Daniel
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2004, 3340 : 368 - 380
  • [39] Sliding block codes between shift spaces over infinite alphabets
    Goncalves, Daniel
    Sobottka, Marcelo
    Starling, Charles
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (17-18) : 2178 - 2191
  • [40] Some properties of Rényi entropy over countably infinite alphabets
    M. Kovačević
    I. Stanojević
    V. Šenk
    Problems of Information Transmission, 2013, 49 : 99 - 110