Tunneling and Speedup in Quantum Optimization for Permutation-Symmetric Problems

被引:65
|
作者
Muthukrishnan, Siddharth [1 ,2 ]
Albash, Tameem [1 ,2 ,3 ]
Lidar, Daniel A. [1 ,2 ,4 ,5 ]
机构
[1] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Inst Informat Sci, Marina Del Rey, CA 90292 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW X | 2016年 / 6卷 / 03期
关键词
MEAN PASSAGE TIMES; MODEL;
D O I
10.1103/PhysRevX.6.031010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final cost function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Finally, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Approximations of permutation-symmetric vertex couplings in quantum graphs
    Exner, Pavel
    Turek, Ondrej
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 109 - +
  • [2] Quantum graph vertices with permutation-symmetric scattering probabilities
    Turek, Ondrej
    Cheon, Taksu
    PHYSICS LETTERS A, 2011, 375 (43) : 3775 - 3780
  • [3] Entanglement and symmetry in permutation-symmetric states
    Markham, Damian J. H.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [4] Entanglement classes of permutation-symmetric qudit states: Symmetric operations suffice
    Migdal, Piotr
    Rodriguez-Laguna, Javier
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [5] Practical designs for permutation-symmetric problem Hamiltonians on hypercubes
    Ben Dodds, A.
    Kendon, Viv
    Adams, Charles S.
    Chancellor, Nicholas
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [6] Permutation-symmetric multicritical points in random antiferromagnetic spin chains
    Damle, K
    Huse, DA
    PHYSICAL REVIEW LETTERS, 2002, 89 (27)
  • [7] State transformations within entanglement classes containing permutation-symmetric states
    Hebenstreit, Martin
    Spee, Cornelia
    Li, Nicky Kai Hong
    Kraus, Barbara
    de Vicente, Julio, I
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [8] Totally destructive interference for permutation-symmetric many-particle states
    Dittel, Christoph
    Dufour, Gabriel
    Walschaers, Mattia
    Weihs, Gregor
    Buchleitner, Andreas
    Keil, Robert
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [9] Control Synthesis for Permutation-Symmetric High-Dimensional Systems With Counting Constraints
    Nilsson, Petter
    Ozay, Necmiye
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (02) : 461 - 476
  • [10] Permutation-symmetric critical phases in disordered non-Abelian anyonic chains
    Fidkowski, L.
    Lin, H. -H.
    Titum, P.
    Refael, G.
    PHYSICAL REVIEW B, 2009, 79 (15)