Advances and Future Perspectives in 4D Bioprinting

被引:170
|
作者
Ashammakhi, Nureddin [1 ,2 ,3 ]
Ahadian, Samad [1 ,2 ]
Fan Zengjie [1 ,2 ,4 ]
Suthiwanich, Kasinan [1 ,2 ,5 ]
Lorestani, Farnaz [1 ,2 ,6 ,7 ]
Orive, Gorka [8 ,9 ,10 ]
Ostrovidov, Serge [1 ,2 ]
Khademhosseini, Ali [1 ,2 ,11 ,12 ,13 ,14 ]
机构
[1] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Oulu Univ, Dept Surg, Div Plast Surg, Oulu 8000, Finland
[4] Lanzhou Univ, Sch Stomatol, Lanzhou 730000, Gansu, Peoples R China
[5] Tokyo Inst Technol, Dept Mat Sci & Engn, Sch Mat & Chem Technol, Tokyo 1528550, Japan
[6] Univ Malaya, Dept Chem, Fac Sci, Kuala Lumpur 50603, Malaysia
[7] Univ Malaya, Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[8] Univ Basque Country, UPV EHU, Fac Pharm, Vitoria 48940, Spain
[9] CIBER BBN, Networking Biomed Res Ctr Bioengn Biomat & Nanome, Vitoria 28029, Spain
[10] Univ Basque Country, Fdn Eduardo Anitua, Univ Inst Regenerat Med & Oral Implantol UIRMI, Vitoria 48940, Spain
[11] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[12] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[13] King Abdulaziz Univ, Ctr Nanotechnol, Dept Phys, Jeddah 21589, Saudi Arabia
[14] Konkuk Univ, Dept Bioind Technol, Coll Anim Biosci & Technol, Seoul 05029, South Korea
基金
美国国家卫生研究院;
关键词
4D bioprinting; additive manufacturing; bioinks; stimuli-responsive biomaterials; tissue engineering; DRUG-DELIVERY; ELECTRICAL-STIMULATION; CARBON NANOTUBES; ON-DEMAND; HYDROGELS; GRAPHENE; POLYMER; CELLS; PH; DIFFERENTIATION;
D O I
10.1002/biot.201800148
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensionally printed constructs are static and do not recapitulate the dynamic nature of tissues. Four-dimensional (4D) bioprinting has emerged to include conformational changes in printed structures in a predetermined fashion using stimuli-responsive biomaterials and/or cells. The ability to make such dynamic constructs would enable an individual to fabricate tissue structures that can undergo morphological changes. Furthermore, other fields (bioactuation, biorobotics, and biosensing) will benefit from developments in 4D bioprinting. Here, the authors discuss stimuli-responsive biomaterials as potential bioinks for 4D bioprinting. Natural cell forces can also be incorporated into 4D bioprinted structures. The authors introduce mathematical modeling to predict the transition and final state of 4D printed constructs. Different potential applications of 4D bioprinting are also described. Finally, the authors highlight future perspectives for this emerging technology in biomedicine.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering
    Chen, Annan
    Wang, Wanying
    Mao, Zhengyi
    He, Yunhu
    Chen, Shiting
    Liu, Guo
    Su, Jin
    Feng, Pei
    Shi, Yusheng
    Yan, Chunze
    Lu, Jian
    ADVANCED MATERIALS, 2024, 36 (34)
  • [42] Mechanics of hydrogel-based bioprinting: From 3D to 4D
    Yang, Qingzhen
    Lv, Xuemeng
    Gao, Bin
    Ji, Yuan
    Xu, Feng
    ADVANCES IN APPLIED MECHANICS, VOL 54, 2021, 54 : 285 - 318
  • [43] 4D electron imaging: principles and perspectives
    Shorokhov, Dmitry
    Zewail, Ahmed H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (20) : 2879 - 2893
  • [44] 4D tracking: present status and perspectives
    Cartiglia, N.
    Arcidiacono, R.
    Costa, M.
    Ferrero, M.
    Gioachin, G.
    Mandurrino, M.
    Menzio, L.
    Siviero, F.
    Sola, V.
    Tornago, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1040
  • [45] Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like?
    Khorsandi, Danial
    Rezayat, Dorsa
    Sezen, Serap
    Ferrao, Rafaela
    Khosravi, Arezoo
    Zarepour, Atefeh
    Khorsandi, Melika
    Hashemian, Mohammad
    Iravani, Siavash
    Zarrabi, Ali
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (19) : 4584 - 4612
  • [46] 4D Bioprinting via Molecular Network Contraction for Membranous Tissue Fabrication
    McLoughlin, Shannon T. T.
    McKenna, Abigail R. R.
    Fisher, John P. P.
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (27)
  • [47] Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting
    Rahimnejad, Maedeh
    Jahangiri, Sepideh
    Kiadeh, Shahrzad Zirak Hassan
    Rezvaninejad, Seyedkamaladdin
    Ahmadi, Zarrin
    Ahmadi, Sepideh
    Safarkhani, Moein
    Rabiee, Navid
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (05) : 860 - 891
  • [48] Diabetic Foot Ulcer Regeneration Platform Based on 4D Bioprinting Technology
    Kim, Jeehee
    DIABETES, 2020, 69
  • [49] Bioprinting in ophthalmology: current advances and future pathways
    Poomathi, Nataraj
    Singh, Sunpreet
    Prakash, Chander
    Patil, Rajkumar V.
    Perumal, P. T.
    Barathi, Veluchamy Amutha
    Balasubramanian, Kalpattu K.
    Ramakrishna, Seeram
    Maheshwari, N. U.
    RAPID PROTOTYPING JOURNAL, 2019, 25 (03) : 496 - 514
  • [50] Natural Origin Biomaterials for 4D Bioprinting Tissue-Like Constructs
    Costa, Patricia D. C.
    Costa, Dora C. S.
    Correia, Tiago R.
    Gaspar, Vitor M.
    Mano, Joao F.
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (10)