Hardy-Sobolev Type Inequalities with Sharp Constants in Carnot-Carath,odory Spaces

被引:26
|
作者
Danielli, Donatella [1 ]
Garofalo, Nicola [1 ]
Phuc, Nguyen Cong [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Hardy type inequalities; Carnot groups; Carnot-Carathcodory spaces; Horizontal p-Laplacian; CARNOT-CARATHEODORY SPACES; HEISENBERG-GROUP; VECTOR-FIELDS; SUBELLIPTIC EQUATIONS; FUNDAMENTAL-SOLUTIONS; UNIQUE CONTINUATION; HEAT-EQUATION; OPERATORS; THEOREMS; SURFACE;
D O I
10.1007/s11118-010-9190-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a generalization with sharp constants of a classical inequality due to Hardy to Carnot groups of arbitrary step, or more general Carnot-Carath,odory spaces associated with a system of vector fields of Hormander type. Under a suitable additional assumption (see Eq. 1.6 below) we are able to extend such result to the nonlinear case p not equal 2. We also obtain a sharp inequality of Hardy-Sobolev type.
引用
收藏
页码:223 / 242
页数:20
相关论文
共 50 条
  • [31] Differentiability of horizontal curves in Carnot-Carathéodory quasispaces
    A. V. Greshnov
    Siberian Mathematical Journal, 2008, 49 : 53 - 68
  • [32] Mean Value Property and Harmonicity on Carnot-Carathéodory Groups
    Tomasz Adamowicz
    Ben Warhurst
    Potential Analysis, 2020, 52 : 497 - 525
  • [33] Carnot-Carathéodory Metric and Gauge Fluctuation in Noncommutative Geometry
    Pierre Martinetti
    Communications in Mathematical Physics, 2006, 265 : 585 - 616
  • [34] ON INEQUALITIES OF HARDY-SOBOLEV TYPE
    Balinsky, A.
    Evans, W. D.
    Hundertmark, D.
    Lewis, R. T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 94 - 106
  • [35] Tangent cone to a regular quasimetric Carnot-Carathéodory space
    S. V. Selivanova
    Doklady Mathematics, 2009, 79 : 265 - 269
  • [36] Tangent cone to a regular quasimetric Carnot-Carath,odory space
    Selivanova, S. V.
    DOKLADY MATHEMATICS, 2009, 79 (02) : 265 - 269
  • [37] Graph surfaces of codimension two over three-dimensional Carnot-Carath,odory spaces
    Karmanova, M. B.
    DOKLADY MATHEMATICS, 2016, 93 (03) : 322 - 325
  • [38] Sharp Hardy and Hardy-Sobolev inequalities with point singularities on the boundary
    Barbatis, G.
    Filippas, S.
    Tertikas, A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 146 - 184
  • [39] Convergence of scaled vector fields and local approximation theorem on Carnot-Carathéodory spaces and applications
    M. B. Karmanova
    Doklady Mathematics, 2011, 84 : 711 - 717
  • [40] Remarks on inequalities of Hardy-Sobolev Type
    Ying-Xiong Xiao
    Journal of Inequalities and Applications, 2011