Universal Bethe Ansatz and Scalar Products of Bethe Vectors

被引:15
|
作者
Belliard, Samuel [1 ]
Pakuliak, Stanislav [2 ,3 ,4 ]
Ragoucy, Eric [5 ,6 ]
机构
[1] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Joint Inst Nucl Res, Theoret Phys Lab, Dubna 141980, Moscow Reg, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Reg, Russia
[5] CNRS, Lab Phys Theor LAPTH, F-74941 Annecy Le Vieux, France
[6] Univ Savoie, F-74941 Annecy Le Vieux, France
关键词
Bethe ansatz; quantum affine algebras; WEIGHT FUNCTION; QUANTUM;
D O I
10.3842/SIGMA.2010.094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integral presentation for the scalar products of nested Bethe vectors for the quantum integrable models associated with the quantum affine algebra U-q((gl) over cap (3)) is given. This result is obtained in the framework of the universal Bethe ansatz, using presentation of the universal Bethe vectors in terms of the total currents of a "new" realization of the quantum affine algebra U-q((gl) over cap (3)).
引用
收藏
页数:22
相关论文
共 50 条
  • [31] BETHE ANSATZ ON A QUANTUM COMPUTER?
    Nepomechie, Rafael, I
    QUANTUM INFORMATION & COMPUTATION, 2021, 21 (3-4) : 255 - 265
  • [32] The Bethe Ansatz as a Quantum Circuit
    Ruiz, Roberto
    Sopena, Alejandro
    Gordon, Max Hunter
    Sierra, German
    Lopez, Esperanza
    QUANTUM, 2024, 8
  • [33] Discrete thermodynamic Bethe ansatz
    Bergère, M
    Imura, KI
    Ouvry, S
    NUCLEAR PHYSICS B, 2001, 608 (03) : 577 - 590
  • [34] Persistent Currents and Bethe Ansatz
    Kirsanskas, G.
    Matulis, A.
    ACTA PHYSICA POLONICA A, 2011, 119 (02) : 158 - 160
  • [35] Hirota equation and Bethe ansatz
    A. V. Zabrodin
    Theoretical and Mathematical Physics, 1998, 116 : 782 - 819
  • [36] THE YANGIANS, BETHE ANSATZ AND COMBINATORICS
    KIRILLOV, AN
    RESHETIKHIN, NY
    LETTERS IN MATHEMATICAL PHYSICS, 1986, 12 (03) : 199 - 208
  • [37] Discrete thermodynamic Bethe ansatz
    Bergére, M
    Imura, KI
    Ouvry, S
    Electronic Correlations: From Meso- to Nano-Physics, 2001, : 319 - 322
  • [38] Chaos in the thermodynamic Bethe ansatz
    Castro-Alvaredo, O
    Fring, A
    PHYSICS LETTERS A, 2005, 334 (2-3) : 173 - 179
  • [39] Boundary perimeter Bethe ansatz
    Frassek, Rouven
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (26)
  • [40] Bethe ansatz and isomondromy deformations
    Talalaev, D. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (02) : 627 - 639