Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers

被引:19
|
作者
Bae, Ji Eun [1 ]
Park, Tae Gwan [1 ]
Kifle, Esrom [2 ]
Mateos, Xavier [2 ]
Aguilo, Magdalena [2 ]
Diaz, Francesc [2 ]
Romero, Carolina [3 ]
Vazquez de Aldana, Javier Rodriguez [3 ]
Lee, Hansuek [1 ,4 ]
Rotermund, Fabian [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[2] URV, Fis & Cristal Lografra Mat & Nanomat FiCMA FiCNA, E-43007 Tarragona, Spain
[3] Univ Salamanca, Aplicac Laser & Foton, E-37008 Salamanca, Spain
[4] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
GHZ; MOS2;
D O I
10.1364/OL.45.000216
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A channel waveguide (WC) buried immediately below the surface of a Yb:KLuW crystal is used as a laser gain medium for passive Q-switching by both evanescent- and direct-field interactions with single-walled carbon nanotubes (SWCNTs) near 1040 nm. The SWCNTs used as saturable absorbers (SAs) are deposited on top of the half-ring-type channel WG fabricated via femtosecond direct laser writing. The Q-switched WC laser delivers 88.5 ns pulses at a 1.16 MHz repetition rate with a maximum average output power of 680 mW. For the two different interaction schemes with SWCNT-SAs, the pulse characteristics, depending on the output coupling ratio and absorbed pump power, are experimentally investigated and compared to the results of theoretical analyses of the SA Q-switched operation. (C) 2019 Optical Society of America
引用
收藏
页码:216 / 219
页数:4
相关论文
共 50 条
  • [21] Passively Q-switched Nd:KLuW laser with semiconductor saturable absorber
    Guo Lin
    Wang Gui-Ling
    Zhang Hong-Bo
    Geng Ai-Cong
    Chen Ya-Hui
    Lu Yuan-Fu
    Cui Qian-Jin
    Zhou Yong
    Cui Da-Fu
    Zhang Jian-Xiu
    Zhang Huai-Jin
    Wang Ji-Yang
    Xu Zu-Yan
    CHINESE PHYSICS LETTERS, 2007, 24 (06) : 1583 - 1585
  • [22] Highly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power
    Hakobyan, Sargis
    Wittwer, Valentin J.
    Hasse, Kore
    Kraenkel, Christian
    Sudmeyer, Thomas
    Calmano, Thomas
    OPTICS LETTERS, 2016, 41 (20) : 4715 - 4718
  • [23] The comparative simulation of the Q-switched Nd:YAG and Yb:YAG microchip lasers
    Buryy, OA
    Ubiszkii, SB
    Melnyk, SS
    Matkovskii, AO
    LFNM 2003: LASER AND FIBER-OPTICAL NETWORKS MODELING, PROCEEDINGS, 2003, : 90 - 92
  • [24] Q-switched fiber lasers with carbon nanotubes hosted in ceramics
    Song, Yong-Won
    APPLIED OPTICS, 2012, 51 (03) : 290 - 294
  • [25] Mode competition in acousto-optically Q-switched planar waveguide lasers
    Xu, Jianqiu
    Baker, H. J.
    Hall, D. R.
    OPTICS AND LASER TECHNOLOGY, 2007, 39 (04): : 814 - 820
  • [26] Modelocked and Q-switched Ti:Er:LiNbO3 waveguide lasers
    Suche, H
    RARE-EARTH-DOPED MATERIALS AND DEVICES III, 1999, 3622 : 92 - 100
  • [27] OPTIMIZATION OF DYE Q-SWITCHED LASERS
    ZHANG, XY
    ZHAO, SZ
    WANG, QP
    LIU, YG
    WANG, JY
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (04) : 905 - 908
  • [28] Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide
    Tan, Yang
    Akhmadaliev, Shavkat
    Zhou, Shengqiang
    Sun, Shangqian
    Chen, Feng
    OPTICS EXPRESS, 2014, 22 (03): : 3572 - 3577
  • [29] OPTIMIZATION OF PASSIVELY Q-SWITCHED LASERS
    DEGNAN, JJ
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1995, 31 (11) : 1890 - 1901
  • [30] Investigation of mechanically Q-switched lasers
    Cole, Brian
    Goldberg, Lew
    Hough, Nathaniel
    Nettleton, John
    SOLID STATE LASERS XXIV: TECHNOLOGY AND DEVICES, 2015, 9342