High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation

被引:12
|
作者
Ren, Jincheng [1 ]
Shi, Dongyang [2 ]
Vong, Seakweng [3 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Peoples R China
[3] Univ Macau, Dept Math, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
fast convolution algorithm; Galerkin finite element method; nonlinear time fractional diffusion equation; superconvergent result; DIFFERENCE METHODS; L1-GALERKIN FEMS; STABILITY; SCHEME; MESHES;
D O I
10.1002/num.22428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, an effective and fast finite element numerical method with high-order accuracy is discussed for solving a nonlinear time fractional diffusion equation. A two-level linearized finite element scheme is constructed and a temporal-spatial error splitting argument is established to split the error into two parts, that is, the temporal error and the spatial error. Based on the regularity of the time discrete system, the temporal error estimate is derived. Using the property of the Ritz projection operator, the spatial error is deduced. Unconditional superclose result in H-1-norm is obtained, with no additional regularity assumption about the exact solution of the problem considered. Then the global superconvergence error estimate is obtained through the interpolated postprocessing technique. In order to reduce storage and computation time, a fast finite element method evaluation scheme for solving the nonlinear time fractional diffusion equation is developed. To confirm the theoretical error analysis, some numerical results are provided.
引用
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [31] A priori and a posteriori error estimates of a space-time Petrov-Galerkin spectral method for time-fractional diffusion equation
    Tang, Bo
    Mao, Wenting
    Zeng, Zhankuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 559 - 572
  • [32] Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation
    Wang, Haifeng
    Xu, Da
    Zhou, Jun
    Guo, Jing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 732 - 749
  • [33] Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
    Nong, Lijuan
    Chen, An
    Cao, Jianxiong
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
  • [34] Galerkin finite element method for nonlinear fractional Schrodinger equations
    Li, Meng
    Huang, Chengming
    Wang, Pengde
    NUMERICAL ALGORITHMS, 2017, 74 (02) : 499 - 525
  • [35] Galerkin finite element method for nonlinear fractional differential equations
    Khadijeh Nedaiasl
    Raziyeh Dehbozorgi
    Numerical Algorithms, 2021, 88 : 113 - 141
  • [36] Galerkin finite element method for nonlinear fractional differential equations
    Nedaiasl, Khadijeh
    Dehbozorgi, Raziyeh
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 113 - 141
  • [37] Error estimates for Galerkin finite element methods for the Camassa-Holm equation
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 833 - 862
  • [38] High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations
    Shi, Z. G.
    Zhao, Y. M.
    Liu, F.
    Tang, Y. F.
    Wang, F. L.
    Shi, Y. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (08) : 1903 - 1914
  • [39] Stability analysis and error estimates of local discontinuous Galerkin method for nonlinear fractional Ginzburg–Landau equation with the fractional Laplacian
    Tarek Aboelenen
    Mohammed Alqawba
    The European Physical Journal Special Topics, 2023, 232 : 2607 - 2617
  • [40] Interior energy error estimates for the weak Galerkin finite element method
    Hengguang Li
    Lin Mu
    Xiu Ye
    Numerische Mathematik, 2018, 139 : 447 - 478