Multivariate models for operational risk

被引:31
|
作者
Boecker, Klaus [3 ]
Klueppelberg, Claudia [1 ,2 ]
机构
[1] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
[2] Tech Univ Munich, Inst Adv Study, D-85747 Garching, Germany
[3] HypoVereinsbank AG, Risk Integrat, Reporting & Policies, UniCredit Grp,Munich Branch, D-81925 Munich, Germany
关键词
Dependence model; Levy copula; Multivariate dependence; Multivariate Levy process; Operational risk; Pareto distribution; Regular variation; Subexponential distribution;
D O I
10.1080/14697680903358222
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Bocker and Kluppelberg [Risk Mag., 2005, December, 90-93] presented a simple approximation of OpVaR of a single operational risk cell. The present paper derives approximations of similar quality and simplicity for the multivariate problem. Our approach is based on the modelling of the dependence structure of different cells via the new concept of a Levy copula.
引用
下载
收藏
页码:855 / 869
页数:15
相关论文
共 50 条
  • [1] Multivariate Cox Hidden Markov models with an application to operational risk
    Fung, Tsz Chai
    Badescu, Andrei L.
    Lin, X. Sheldon
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, : 1 - 25
  • [2] Measuring tail operational risk in univariate and multivariate models with extreme losses
    Yang, Yang
    Gong, Yishan
    Liu, Jiajun
    JOURNAL OF OPERATIONAL RISK, 2023, 18 (01): : 31 - 57
  • [3] Bayesian operational risk models
    Figini, Silvia
    Gao, Lijun
    Giudici, Paolo
    JOURNAL OF OPERATIONAL RISK, 2015, 10 (02): : 45 - 60
  • [4] Quantitative Operational Risk Models
    Penman, Alan
    ANNALS OF ACTUARIAL SCIENCE, 2013, 7 (01) : 167 - 168
  • [5] Modeling and measuring multivariate operational risk with Levy copulas
    Boecker, Klaus
    Klueppelberg, Claudia
    JOURNAL OF OPERATIONAL RISK, 2008, 3 (02): : 3 - 27
  • [6] Statistical models for operational risk management
    Cornalba, C
    Giudici, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (1-2) : 166 - 172
  • [7] Benchmarking operational risk stress testing models
    Curti, Filippo
    Migueis, Marco
    Stewart, Robert
    JOURNAL OF OPERATIONAL RISK, 2020, 15 (02): : 27 - 42
  • [8] Multivariate estimation for operational risk with judicious use of extreme value theory
    El-Gamal, Mahmoud
    Inanoglu, Hulusi
    Stengel, Mitch
    JOURNAL OF OPERATIONAL RISK, 2007, 2 (01): : 21 - 54
  • [9] Adding prior knowledge to quantitative operational risk models
    Bolance, Catalina
    Guillen, Montserrat
    Gustafsson, Jim
    Nielsen, Jens Perch
    JOURNAL OF OPERATIONAL RISK, 2013, 8 (01): : 17 - 32
  • [10] Quantitative models for operational risk:: Extremes, dependence and aggregation
    Chavez-Demoulin, V.
    Embrechts, P.
    Neslehova, J.
    JOURNAL OF BANKING & FINANCE, 2006, 30 (10) : 2635 - 2658