HERMITIAN POINTS IN MARKOV SPECTRA

被引:3
|
作者
Vulakh, L. Ya [1 ]
机构
[1] Cooper Union Adv Sci & Art, Dept Math, New York, NY 10003 USA
关键词
Diophantine approximation; hyperbolic geometry; Bianchi groups; FUCHSIAN SUBGROUPS; BIANCHI GROUPS; DIOPHANTINE APPROXIMATION;
D O I
10.1142/S1793042110003186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(n) be the upper half-space model of the n-dimensional hyperbolic space. For n = 3, Hermitian points in the Markov spectrum of the extended Bianchi group B(d) are introduced for any d. If nu is a Hermitian point in the spectrum, then there is a set of extremal geodesics in H(3) with diameter 1/nu, which depends on one continuous parameter. It is shown that nu(2) <= vertical bar D vertical bar/24 for any imaginary quadratic field with discriminant D, whose ideal-class group contains no cyclic subgroup of order 4, and in many other cases. Similarly, in the case of n = 4, if nu is a Hermitian point in the Markov spectrum for SV (Z(4)), some discrete group of isometries of H(4), then the corresponding set of extremal geodesics depends on two continuous parameters.
引用
收藏
页码:713 / 730
页数:18
相关论文
共 50 条
  • [11] Spectra of nearly Hermitian random matrices
    O'Rourke, Sean
    Wood, Philip Matchett
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1241 - 1279
  • [12] ACCUMULATION POINTS IN MARKOV SYSTEMS
    KOPETZKY, HG
    ARCHIV DER MATHEMATIK, 1983, 41 (01) : 64 - 70
  • [13] SOME REMARKS ON THE SPECTRA OF HERMITIAN MATRICES
    KOVACSTRIKO, J
    VESELIC, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 145 : 221 - 229
  • [14] Existence and uniqueness of fixed points for Markov operators and Markov processes
    Hernandez-Lerma, O
    Lasserre, JB
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 76 : 711 - 736
  • [15] Unitary periods, Hermitian forms and points on flag varieties
    Gautam Chinta
    Omer Offen
    Mathematische Annalen, 2007, 339 : 891 - 913
  • [16] Remarks on pseudo-Hermitian matrices and their exceptional points
    Scolarici, G
    Solombrino, L
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) : 1177 - 1182
  • [17] Exceptional points in a non-Hermitian topological pump
    Hu, Wenchao
    Wang, Hailong
    Shum, Perry Ping
    Chong, Y. D.
    PHYSICAL REVIEW B, 2017, 95 (18)
  • [18] Analysis of Dirac exceptional points and their isospectral Hermitian counterparts
    Rivero, Jose H. D.
    Feng, Liang
    Ge, Li
    PHYSICAL REVIEW B, 2023, 107 (10)
  • [19] Unconventional scaling at non-Hermitian critical points
    Arouca, R.
    Lee, C. H.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2020, 102 (24)
  • [20] Unitary periods, Hermitian forms and points on flag varieties
    Chinta, Gautam
    Offen, Omer
    MATHEMATISCHE ANNALEN, 2007, 339 (04) : 891 - 913