Compactification of moduli of Higgs bundles

被引:0
|
作者
Hausel, T [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a canonical compactification of M the moduli space of stable Higgs bundles with fixed determinant of odd degree over a Riemann surface Sigma, producing a projective variety (M) over bar = M boolean OR Z. We give a detailed study of the spaces (M) over bar, Z and M In doing so we reprove some assertions of Laumon and Thaddeus on the nilpotent cone.
引用
收藏
页码:169 / 192
页数:24
相关论文
共 50 条
  • [31] Moduli spaces of Higgs bundles on degenerating Riemann surfaces
    Swoboda, Jan
    ADVANCES IN MATHEMATICS, 2017, 322 : 637 - 681
  • [32] Hilbert Schemes as Moduli of Higgs Bundles and Local Systems
    Groechenig, Michael
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (23) : 6523 - 6575
  • [33] Symplectic Geometry of a Moduli Space of Framed Higgs Bundles
    Biswas, Indranil
    Logares, Marina
    Peon-Nieto, Ana
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 5623 - 5650
  • [34] Special Kahler geometry on the moduli spaces of Higgs bundles
    Huang, Zhenxi
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301
  • [35] On the Voevodsky motive of the moduli space of Higgs bundles on a curve
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (01):
  • [36] A Torelli theorem for the moduli space of parabolic Higgs bundles
    Gomez, Tomas L.
    Logares, Marina
    ADVANCES IN GEOMETRY, 2011, 11 (03) : 429 - 444
  • [37] On the motives of moduli of parabolic chains and parabolic Higgs bundles
    Do, Viet Cuong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [38] A Torelli theorem for the moduli space of Higgs bundles on a curve
    Biswas, I
    Gómez, TL
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 159 - 169
  • [39] Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve
    Fu, Lie
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 66 - 89
  • [40] On a new compactification of the moduli of vector bundles on a surface. III: Functorial approach
    Timofeeva, N. V.
    SBORNIK MATHEMATICS, 2011, 202 (03) : 413 - 465