Optimization of subcritical water pre-treatment for biogas enhancement on co-digestion of pineapple waste and cow dung using the response surface methodology

被引:15
|
作者
Hamzah, A. F. Aili [1 ]
Hamzah, M. H. [1 ,2 ]
Mazlan, N. I. [1 ]
Man, H. Che [1 ,2 ]
Jamali, N. S. [3 ]
Siajam, S. I. [3 ]
Show, P. L. [4 ]
机构
[1] Univ Putra Malaysia, Fac Engn, Dept Biol & Agr Engn, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Fac Engn, Smart Farming Technol Res Ctr, Upm Serdang 43400, Selangor, Malaysia
[3] Univ Putra Malaysia, Fac Engn, Dept Chem & Environm Engn, Upm Serdang 43400, Selangor, Malaysia
[4] Univ Nottingham Malaysia, Fac Sci & Engn, Dept Chem & Environm Engn, Jalan Broga, Semenyih 43500, Selangor, Malaysia
关键词
Co; -digestion; Optimization; Pineapple waste; Pre-treatment; Response surface methodology; Subcritical Water; ANAEROBIC-DIGESTION; HYDROTHERMAL PRETREATMENT; LIGNOCELLULOSIC BIOMASS; ANIMAL MANURES; RICE STRAW; HYDROLYSIS; CHALLENGES; RESIDUES; ETHANOL; STOVER;
D O I
10.1016/j.wasman.2022.06.042
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The optimal pre-treatment method and conditions depend on the types of lignocellulose present due to the complexity and the variability of biomass chemical structures. This study optimized subcritical water pretreatment to ensure maximum methane production from pineapple waste prior to anaerobic co-digestion with cow dung using the response surface methodology. A central composite design was achieved with three different factors and one response. A total of 20 pre-treatment runs were performed at different temperatures, reaction times and water to solid ratios suggesting optimum values for subcritical water pre-treatment at 128.52 degrees C for 5 min with 5.67 to 1 water to solid ratio. Under these conditions, methane yield increased from 59.09 to 85.05 mL CH4/g VS with an increase of 23% biogas yield and 44% methane yield from the untreated. All pre-treatments above 200 degrees C showed reductions in biogas yield. Compositional analysis showed slight reduction of lignin and increase in alpha-cellulose content after the pre-treatment. Analysis using Fourier transform infrared spectroscopy and thermogravimetric analysis verified the presence of cellulosic material in pre-treated pineapple waste. Most of the hemicellulose was solubilized in the liquid samples after SCW pre-treatment. The crystallinity index of pineapple waste was reduced from 57.58% (untreated) to 54.29% (pre-treated). Scanning electron microscopy confirmed the structural modification of pre-treated pineapple waste for better microbial attack. Subcritical water pre-treatment is feasible as a promising method to enhance the anaerobic co-digestion process. Further study should be conducted to assess the scale-up of the process from pre-treatment to anaerobic digestion at the pilot plant level.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 50 条
  • [31] Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment
    Alagoz, B. Aylin
    Yenigun, Orhan
    Erdincler, Aysen
    WASTE MANAGEMENT, 2015, 46 : 182 - 188
  • [32] Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste
    Budych-Gorzna, Magdalena
    Smoczynski, Marcin
    Oleskowicz-Popiel, Piotr
    APPLIED ENERGY, 2016, 161 : 387 - 394
  • [33] Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment
    Kim, Daegi
    Lee, Kwanyong
    Park, Ki Young
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2015, 101 : 42 - 46
  • [34] A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste
    Ahmad, Aqueel
    Yadav, Ashok Kumar
    Singh, Achhaibar
    Singh, Dinesh Kumar
    BIOMASS & BIOENERGY, 2024, 180
  • [35] Rice straw anaerobic co-digestion: Comparing various pre-treatment techniques to enhance biogas production
    Mothe, Sagarika
    Jugal, Sukesh Muramreddy
    Rao, P. Venkateswara
    Sridhar, Pilli
    BIORESOURCE TECHNOLOGY REPORTS, 2024, 25
  • [36] Biogas from food waste through anaerobic digestion: optimization with response surface methodology
    B. Deepanraj
    N. Senthilkumar
    J. Ranjitha
    S. Jayaraj
    Hwai Chyuan Ong
    Biomass Conversion and Biorefinery, 2021, 11 : 227 - 239
  • [37] Biogas from food waste through anaerobic digestion: optimization with response surface methodology
    Deepanraj, B.
    Senthilkumar, N.
    Ranjitha, J.
    Jayaraj, S.
    Ong, Hwai Chyuan
    BIOMASS CONVERSION AND BIOREFINERY, 2021, 11 (02) : 227 - 239
  • [38] Improving biogas production from continuous co-digestion of oily wastewater and waste-activated sludge by hydrodynamic cavitation pre-treatment
    Habashi, Nima
    Alighardashi, Abolghasem
    Mennerich, Artur
    Mehrdadi, Nasser
    Torabian, Ali
    ENVIRONMENTAL TECHNOLOGY, 2018, 39 (08) : 1017 - 1024
  • [39] Promoting the production of methane on the co-digestion of food waste and sewage sludge by aerobic pre-treatment
    Cheng, Lijie
    Gao, Ningbo
    Quan, Cui
    Chu, Hua
    Wang, Guojuan
    Fuel, 2021, 292
  • [40] Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge
    Quiroga, G.
    Castrillon, L.
    Fernandez-Nava, Y.
    Maranon, E.
    Negral, L.
    Rodriguez-Iglesias, J.
    Ormaechea, P.
    BIORESOURCE TECHNOLOGY, 2014, 154 : 74 - 79