degrees of freedom;
LARS algorithm;
lasso;
model selection;
SURE;
unbiased estimate;
D O I:
10.1214/009053607000000127
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We study the effective degrees of freedom of the lasso in the framework of Stein's unbiased risk estimation (SURE). We show that the number of nonzero coefficients is an unbiased estimate for the degrees of freedom of the lasso-a conclusion that requires no special assumption on the predictors. In addition, the unbiased estimator is shown to be asymptotically consistent. With these results on hand, various model selection criteria-C-p, AIC and BIC-are available, which, along with the LARS algorithm, provide a principled and efficient approach to obtaining the optimal lasso fit with the computational effort of a single ordinary least-squares fit.
机构:
Univ Appl Sci Wiener Neustadt, Dept Appl & Numer Mech, Wiener Neustadt, AustriaUniv Appl Sci Wiener Neustadt, Dept Appl & Numer Mech, Wiener Neustadt, Austria
Kugler, Stephan
Fotiu, Peter A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Appl Sci Wiener Neustadt, Dept Appl & Numer Mech, Wiener Neustadt, AustriaUniv Appl Sci Wiener Neustadt, Dept Appl & Numer Mech, Wiener Neustadt, Austria
Fotiu, Peter A.
Murin, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Dept Mech, Bratislava, SlovakiaUniv Appl Sci Wiener Neustadt, Dept Appl & Numer Mech, Wiener Neustadt, Austria
机构:
Univ Pittsburgh, Hand Res Lab, Dept Orthopaed Surg, Pittsburgh, PA 15213 USAUniv Pittsburgh, Hand Res Lab, Dept Orthopaed Surg, Pittsburgh, PA 15213 USA
机构:
Washington Univ, George Warren Brown Sch Social Work, St Louis, MO 63130 USAWashington Univ, George Warren Brown Sch Social Work, St Louis, MO 63130 USA
Pandey, Shanta
Bright, Charlotte Lyn
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, George Warren Brown Sch Social Work, St Louis, MO 63130 USAWashington Univ, George Warren Brown Sch Social Work, St Louis, MO 63130 USA