A Hybrid of Deep Reinforcement Learning and Local Search for the Vehicle Routing Problems

被引:74
|
作者
Zhao, Jiuxia [1 ]
Mao, Minjia [2 ]
Zhao, Xi [3 ]
Zou, Jianhua [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Routing; Adaptation models; Heuristic algorithms; Search problems; Training; Optimization; VRP; VRPTW; routing simulator; deep reinforcement learning; adaptive critic; local search; LARGE NEIGHBORHOOD SEARCH; OPTIMIZATION; ALGORITHMS; DELIVERY;
D O I
10.1109/TITS.2020.3003163
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Different variants of the Vehicle Routing Problem (VRP) have been studied for decades. State-of-the-art methods based on local search have been developed for VRPs, while still facing problems of slow running time and poor solution quality in the case of large problem size. To overcome these problems, we first propose a novel deep reinforcement learning (DRL) model, which is composed of an actor, an adaptive critic and a routing simulator. The actor, based on the attention mechanism, is designed to generate routing strategies. The adaptive critic is devised to change the network structure adaptively, in order to accelerate the convergence rate and improve the solution quality during training. The routing simulator is developed to provide graph information and reward with the actor and adaptive cirtic. Then, we combine this DRL model with a local search method to further improve the solution quality. The output of the DRL model can serve as the initial solution for the following local search method, from where the final solution of the VRP is obtained. Tested on three datasets with customer points of 20, 50 and 100 respectively, experimental results demonstrate that the DRL model alone finds better solutions compared to construction algorithms and previous DRL approaches, while enabling a 5- to 40-fold speedup. We also observe that combining the DRL model with various local search methods yields excellent solutions at a superior generation speed, comparing to that of other initial solutions.
引用
收藏
页码:7208 / 7218
页数:11
相关论文
共 50 条
  • [21] Deep Reinforcement Learning for the Capacitated Vehicle Routing Problem with Soft Time Window
    Wang, Xiaohe
    Shi, Xinli
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 352 - 355
  • [22] GRASP with a new local search scheme for Vehicle Routing Problems with Time Windows
    Chaovalitwongse, W
    Kim, D
    Pardalos, PM
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2003, 7 (02) : 179 - 207
  • [23] An iterated local search algorithm for latency vehicle routing problems with multiple depots
    Osorio-Mora, Alan
    Escobar, John Willmer
    Toth, Paolo
    COMPUTERS & OPERATIONS RESEARCH, 2023, 158
  • [24] GRASP with a New Local Search Scheme for Vehicle Routing Problems with Time Windows
    Wanpracha Chaovalitwongse
    Dukwon Kim
    Panos M. Pardalos
    Journal of Combinatorial Optimization, 2003, 7 : 179 - 207
  • [25] An assignment-based local search method for solving vehicle routing problems
    Zeng, L
    Ong, HL
    Ng, KM
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2005, 22 (01) : 85 - 104
  • [26] Using constraint programming and local search methods to solve vehicle routing problems
    Shaw, P
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP98, 1998, 1520 : 417 - 431
  • [27] A hybrid algorithm of local search for the heterogeneous fixed fleet vehicle routing problem
    Kochetov Y.A.
    Khmelev A.V.
    Journal of Applied and Industrial Mathematics, 2015, 9 (4) : 503 - 518
  • [28] Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for Multi-Objective Vehicle Routing Problems with Time Windows
    Deng, Jianjun
    Wang, Junjie
    Wang, Xiaojun
    Cai, Yiqiao
    Liu, Peizhong
    SYMMETRY-BASEL, 2024, 16 (08):
  • [29] Learning 2-Opt Heuristics for Routing Problems via Deep Reinforcement Learning
    da Costa P.
    Rhuggenaath J.
    Zhang Y.
    Akcay A.
    Kaymak U.
    SN Computer Science, 2021, 2 (5)
  • [30] Hybrid optimization of vehicle routing problems
    Lam, Edward
    CONSTRAINTS, 2023, 28 (02) : 67 - 68