Dynamic evolution of the resistive wall mode in flowing plasmas

被引:3
|
作者
Chen, Longxi [1 ]
Ma, Zhiwei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China
关键词
STABILIZATION; INSTABILITY;
D O I
10.1088/0031-8949/83/03/035504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamic evolution of the resistive wall mode (RWM) is numerically studied in the slab geometry with and without a plasma flow. The linear growth rate of the RWM is dependent on the resistive wall location (d) and the plasma flow (v(0)). The RWM can be stabilized completely by a plasma flow only if the resistive wall is close enough to the plasma boundary (d < 1.15a). The direction of the plasma flow has an effect on stabilization. The field-aligned flow exhibits the strongest suppressing effect. On the other hand, the shear in the plasma flow has a weak effect on the linear evolution of the RWM. In the nonlinear phase, the amplitude of the perturbed magnetic energy linearly increases with time but very slowly, so that the RWM can be considered as nearly saturated. The saturation can be attributed to flux piling up on the resistive wall. The saturation level decreases with increasing v(0). A field-aligned flow gives the largest reduction of the saturation amplitude.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Resistive wall tearing mode disruptions
    Strauss, H. R.
    Chapman, B. E.
    Lyons, B. C.
    NUCLEAR FUSION, 2024, 64 (10)
  • [32] Stability of the resistive wall mode in JET
    Chapman, I. T.
    Gimblett, C. G.
    Gryaznevich, M. P.
    Hender, T. C.
    Howell, D. F.
    Liu, Y. Q.
    Pinches, S. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (05)
  • [33] RESISTIVE EVOLUTION OF MAGNETIC-FIELDS IN PLASMAS
    MILLER, G
    FABER, V
    WHITE, AB
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (02) : 323 - 341
  • [34] Active stabilization of the resistive-wall mode in high-beta, low-rotation plasmas
    Sabbagh, S. A.
    Bell, R. E.
    Menard, J. E.
    Gates, D. A.
    Sontag, A. C.
    Bialek, J. M.
    LeBlanc, B. P.
    Levinton, F. M.
    Tritz, K.
    Yuh, H.
    PHYSICAL REVIEW LETTERS, 2006, 97 (04)
  • [35] EFFECT OF A NONUNIFORM RESISTIVE WALL ON THE STABILITY OF TOKAMAK PLASMAS
    FITZPATRICK, R
    PHYSICS OF PLASMAS, 1994, 1 (09) : 2931 - 2939
  • [36] Evidence for the Importance of Trapped Particle Resonances for Resistive Wall Mode Stability in High Beta Tokamak Plasmas
    Reimerdes, H.
    Berkery, J. W.
    Lanctot, M. J.
    Garofalo, A. M.
    Hanson, J. M.
    In, Y.
    Okabayashi, M.
    Sabbagh, S. A.
    Strait, E. J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (21)
  • [37] Multiple branches of resistive wall mode instability in a resistive plasma
    Yang, S. X.
    Liu, Y. Q.
    Hao, G. Z.
    Wang, Z. X.
    He, Y. L.
    He, H. D.
    Wang, A. K.
    Xu, M.
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [38] Coupling of the resistive wall mode to liquid wall surface modes
    Rappaport, HL
    PHYSICS OF PLASMAS, 2001, 8 (08) : 3620 - 3629
  • [39] Comment on "Certain clarifications on the resistive wall mode theorem and extensions" [Phys. Plasmas 29, 024502 (2022)]
    Pustovitov, V. D.
    PHYSICS OF PLASMAS, 2022, 29 (08)
  • [40] Comparison between cylindrical model and experimental observation on the study of resistive wall mode in reversed field pinch plasmas
    Wang, Z. R.
    Guo, S. C.
    Shi, L.
    Bolzonella, T.
    Baruzzo, M.
    Wang, X. G.
    PHYSICS OF PLASMAS, 2010, 17 (05)