On the Riemann-Hilbert problem in multiply connected domains

被引:0
|
作者
Ryazanov, Vladimir [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Appl Math & Mech, 1 Dobrovolskii Str, UA-84100 Slavyansk, Ukraine
来源
OPEN MATHEMATICS | 2016年 / 14卷
关键词
Riemann-Hilbert problem; Multivalent solutions; Multiply connected domains; Jordan curves; Harmonic measures; Principal asymptotic values; Rectifiable boundaries; Natural parameter; Nontangential limits;
D O I
10.1515/math-2016-0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We proved the existence of multivalent solutions with the infinite number of branches for the Riemann-Hilbert problem in the general settings of finitely connected domains bounded by mutually disjoint Jordan curves, measurable coefficients and measurable boundary data. The theorem is formulated in terms of harmonic measure and principal asymptotic values. It is also given the corresponding reinforced criterion for domains with rectifiable boundaries stated in terms of the natural parameter and nontangential limits. Furthermore, it is shown that the dimension of the spaces of these solutions is infinite.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [41] On the Riemann-Hilbert problem of the Kundu equation
    Hu, Beibei
    Zhang, Ling
    Xia, Tiecheng
    Zhang, Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [42] The Riemann-Hilbert problem in loop spaces
    G. Giorgadze
    G. Khimshiashvili
    Doklady Mathematics, 2006, 73 : 258 - 260
  • [43] A SPECIAL CASE OF THE RIEMANN-HILBERT PROBLEM
    BOYARSKY, BV
    DOKLADY AKADEMII NAUK SSSR, 1958, 119 (03): : 411 - 414
  • [44] The Riemann-Hilbert problem on the Mobius strip
    Bolosteanu, Carmen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) : 115 - 125
  • [45] Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces
    Cerne, M
    AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (01) : 65 - 87
  • [46] RIEMANN-HILBERT PROBLEM, INTEGRABILITY AND REDUCTIONS
    Gerdjikov, Vladimir S.
    Ivanov, Rossen I.
    Stefanov, Aleksander A.
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 167 - 185
  • [47] Numerical Solution of the Riemann-Hilbert Problem
    Nasser, Mohamed M. S.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2008, 40 : 9 - 29
  • [48] The Riemann-Hilbert problem in loop spaces
    Giorgadze, G.
    Khimshiashvili, G.
    DOKLADY MATHEMATICS, 2006, 73 (02) : 258 - 260
  • [49] Geometrical properties of nonlinear maps and their application, Part II: Nonlinear Riemann-Hilbert problems with closed boundary data for multiply connected domains
    Efendiev, M. A.
    Wendland, W. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) : 425 - 444
  • [50] The Dirichlet and Riemann-Hilbert Problems in Smirnov Classes with Variable Exponent in Doubly Connected Domains
    Kokilashvili V.
    Paatashvili V.
    Journal of Mathematical Sciences, 2014, 198 (6) : 735 - 746