Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations

被引:95
|
作者
Fiorentini, G
Lisi, E
Sarkar, S
Villante, FL
机构
[1] Dipartimento Fis, I-44100 Ferrara, Italy
[2] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy
[3] Dipartimento Fis, I-70126 Bari, Italy
[4] Ist Nazl Fis Nucl, I-70126 Bari, Italy
[5] Univ Oxford, Oxford OX1 3NP, England
来源
PHYSICAL REVIEW D | 1998年 / 58卷 / 06期
关键词
D O I
10.1103/PhysRevD.58.063506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a simple method for determining the (correlated) uncertainties of the light element abundances expected from big bang nucleosynthesis, which avoids the need for lengthy Monte Carlo simulations. Our approach helps to clarify the role of the different nuclear reactions contributing to a particular elemental abundance and makes it easy to implement energy-independent changes in the measured reaction rates, As an application, we demonstrate how this method simplifies the statistical estimation of the nucleon-to-photon ratio through comparison of the standard BBN predictions with the observationally inferred abundances. [S0556-2821(98)05018-8].
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A Monte Carlo Method for Quantifying Uncertainties in the Official Greenhouse Gas Emission Factors Database of Costa Rica
    Molina-Castro, Gabriel
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [42] Monte Carlo simulations of peptide adsorption on solid surfaces (Monte Carlo simulations of peptide adsorption)
    Song, D
    Forciniti, D
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (17): : 8089 - 8100
  • [43] Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties
    Ullman, David S.
    O'Donnell, James
    Kohut, Josh
    Fake, Todd
    Allen, Arthur
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C12)
  • [44] Uncertainties of Weibull Distribution Parameters Obtained by Monte Carlo Simulations of a Dielectric Breakdown in Thin Oxides
    Mitreska, Biljana
    Gjumandeloski, Ice
    Skeparovski, Aleksandar
    9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9), 2016, 1722
  • [45] Monte Carlo and reverse Monte Carlo simulations on molten zinc chloride
    Bassen, A
    Lemke, A
    Bertagnolli, H
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (07) : 1445 - 1454
  • [46] Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy
    Alexis, A.
    Jean, P.
    Martin, P.
    Ferriere, K.
    ASTRONOMY & ASTROPHYSICS, 2014, 564
  • [47] Identification of influential uncertainties in Monte Carlo analysis
    Motoda, T
    Miyazawa, Y
    JOURNAL OF SPACECRAFT AND ROCKETS, 2002, 39 (04) : 615 - 623
  • [48] CALCULATIONAL UNCERTAINTIES BY MONTE-CARLO METHODS
    MINGLE, JO
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 21 (JUN): : 500 - 500
  • [49] Monte Carlo treatment of uncertainties in dynamic reliability
    Labeau, PE
    PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT (PSAM 4), VOLS 1-4, 1998, : 2269 - 2274
  • [50] Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations
    Chatzipapas, Konstantinos P.
    Papadimitroulas, Panagiotis
    Emfietzoglou, Dimitris
    Kalospyros, Spyridon A.
    Hada, Megumi
    Georgakilas, Alexandros G.
    Kagadis, George C.
    CANCERS, 2020, 12 (04)