Dominant topologies in Euclidean quantum gravity

被引:39
|
作者
Carlip, S [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
D O I
10.1088/0264-9381/15/9/010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dominant topologies in the Euclidean path integral for quantum gravity differ sharply according to the sign of the cosmological constant. For Lambda > 0, saddle points can occur only for topologies with vanishing first Beni number and finite fundamental group. For Lambda < 0, on the other hand, the path integral is dominated by topologies with extremely complicated fundamental groups; while the contribution of each individual manifold is strongly suppressed, the 'density of topologies' grows fast enough to overwhelm this suppression. The value Lambda = 0 is thus a sort of boundary between phases in the sum over topologies. I discuss some implications for the cosmological constant problem and the Hartle-Hawking wavefunction.
引用
收藏
页码:2629 / 2638
页数:10
相关论文
共 50 条
  • [31] ONE-LOOP AMPLITUDES IN EUCLIDEAN QUANTUM-GRAVITY
    ESPOSITO, G
    KAMENSHCHIK, AY
    MISHAKOV, IV
    POLLIFRONE, G
    [J]. PHYSICAL REVIEW D, 1995, 52 (06) : 3457 - 3465
  • [32] Effective gravity from a quantum gauge theory in Euclidean spacetime
    Sobreiro, R. F.
    Otoya, V. J. Vasquez
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (20) : 4937 - 4953
  • [33] INTERACTING EUCLIDEAN 3-DIMENSIONAL QUANTUM-GRAVITY
    BONACINA, G
    GAMBA, A
    MARTELLINI, M
    [J]. PHYSICAL REVIEW D, 1992, 45 (10): : 3577 - 3583
  • [34] MIXED BOUNDARY-CONDITIONS IN EUCLIDEAN QUANTUM-GRAVITY
    ESPOSITO, G
    KAMENSHCHIK, AY
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (11) : 2715 - 2722
  • [35] THE G(NEWTON)-] 0 LIMIT OF EUCLIDEAN QUANTUM-GRAVITY
    SMOLIN, L
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (04) : 883 - 893
  • [36] UNRULY TOPOLOGIES IN TWO-DIMENSIONAL QUANTUM-GRAVITY
    HARTLE, JB
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (05) : 707 - 720
  • [37] Anomaly freedom in perturbative models of Euclidean loop quantum gravity
    Wu, Jian-Pin
    Bojowald, Martin
    Ma, Yongge
    [J]. PHYSICAL REVIEW D, 2018, 98 (10)
  • [38] ASYMPTOTICALLY EUCLIDEAN BIANCHI-9 METRICS IN QUANTUM GRAVITY
    BELINSKII, VA
    GIBBONS, GW
    PAGE, DN
    POPE, CN
    [J]. PHYSICS LETTERS B, 1978, 76 (04) : 433 - 435
  • [39] POSITIVE ACTION CONJECTURE AND ASYMPTOTICALLY EUCLIDEAN METRICS IN QUANTUM GRAVITY
    GIBBONS, GW
    POPE, CN
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 66 (03) : 267 - 290
  • [40] The Critical Liouville Quantum Gravity Metric Induces the Euclidean Topology
    Ding, Jian
    Gwynne, Ewain
    [J]. FRONTIERS OF MATHEMATICS, 2024, 19 (01): : 1 - 46